Research Article
BibTex RIS Cite

Influence of deformed potentials on elastic scattering reactions involving deformed projectile-spherical target

Year 2021, Volume: 11 Issue: 1, 1 - 5, 13.06.2021
https://doi.org/10.17678/beuscitech.842132

Abstract

We investigate the effects of potentials with quadrupole and hexadecapole deformations on the elastic scattering angular distributions of deformed projectiles. We calculate the elastic scattering cross-sections of 20Ne + 12C, 22Ne + 12C, 24Mg + 24Mg and 28Si + 27Al reactions by using Deformed Broglia-Winther (1991) (DBW91), Deformed Aage Winther (DAW95) and Deformed Woods-Saxon (DWS) potentials. Then, we perform the calculations for different orientation angles such as θ = 0 and θ = π/2 of deformed projectiles. Finally, we compare the theoretical results together with the experimental data.

References

  • [1] Aygun, M., 2018. Analysis with SDHO and RMF density distributions of elastic scattering cross-sections of oxygen isotopes (16–18O) by various target nuclei. International Journal of Modern Physics E, 27, 1850055.
  • [2] Aygun, M., 2019. Analysis with relativistic mean-field density distribution of elastic scattering cross-sections of carbon isotopes (10–14,16C) by various target nuclei. Pramana – Journal of Physics, 93, 72.
  • [3] Aygun, M., Aygun, Z., 2019. Microscopic analysis of elastic scattering cross sections for different densities of 8Li nucleus on light, medium and heavy mass targets. Revista Mexicana de F´ısica, 65, 404-411.
  • [4] Aygun, M., 2018. Alternative Potentials Analyzing the Scattering Cross Sections of 7,9,10,11,12,14Be Isotopes from a 12C target: Proximity Potentials. Journal of the Korean Physical Society, 73, 1255-1262.
  • [5] Aygun, M., 2018. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turkish Journal of Physics, 42, 302-311.
  • [6] Aygun, M., 2018. A Comparison of Proximity Potentials in the Analysis of Heavy-Ion Elastic Cross Sections. Ukrainian Journal of Physics, 63, 881-887.
  • [7] Rashdan, M., Sewailem, Sh. M., 2019. Deformation and orientation effects on reaction cross-sections at intermediate and high energies. International Journal of Modern Physics E, 28, 1950014.
  • [8] Rashdan, M., 2012. Deformation, orientation, and medium effects in 16,19C + C reactions. Physical Review C 86, 044610.
  • [9] Hassan, M.Y.M., Farag, M.Y.H., Abul-Magd, A.Y., Nassar, T.E.I., 2008. Nucleus–nucleus reaction cross sections for deformed nuclei. Physica Scripta,78, 045202.
  • [11] Thompson, I. J., 1988. Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7, 167.
  • [12] Möller, P., Sierk, A.J., Ichikawa, T., Sagawac, H., 2016. Nuclear ground-state masses and deformations: FRDM(2012). Atomic Data and Nuclear Data Tables, 109-110, 1-204.
  • [13] Winther, A., 1995. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nuclear Physics A, 594, 203-245.
  • [14] Pahlavani, M.R., Alavi, S.A., Tahanipour, N., 2013. Effect of nuclear deformation on the potential barrier and alpha-decay half-lives of superheavy nuclei. Modern Physics Letters A, 28, 16.
  • [15] Wang, N., Scheid, W., 2008. Quasi-elastic scattering and fusion with a modified Woods-Saxon potential. Physical Review C, 78, 014607.
  • [16] Bohlen, H.G., Stiliaris, E., Gebauer, B., von Oertzen, W., Wilpert, M., Wilpert, Th., Ostrowski, A., Khoa, D. T., Demyanova, A.S., Ogloblin, A.A., 1993. Refractive scattering and reactions, comparison of two systems:16O+16O and 20Ne+12C. Zeitschrift fur Physik A, 346, 189-200.
  • [17] Al-Abdullah, T., Carstoiu, F., Chen, X., Clark, H. L., Fu, C., Gagliardi, C. A., Lui, Y.-W., Mukhamedzhanov, A., Tabacaru, G., Tokimoto, Y., Trache, L., Tribble, R. E., 2010. Physical Review C, 81, 035802.
Year 2021, Volume: 11 Issue: 1, 1 - 5, 13.06.2021
https://doi.org/10.17678/beuscitech.842132

Abstract

References

  • [1] Aygun, M., 2018. Analysis with SDHO and RMF density distributions of elastic scattering cross-sections of oxygen isotopes (16–18O) by various target nuclei. International Journal of Modern Physics E, 27, 1850055.
  • [2] Aygun, M., 2019. Analysis with relativistic mean-field density distribution of elastic scattering cross-sections of carbon isotopes (10–14,16C) by various target nuclei. Pramana – Journal of Physics, 93, 72.
  • [3] Aygun, M., Aygun, Z., 2019. Microscopic analysis of elastic scattering cross sections for different densities of 8Li nucleus on light, medium and heavy mass targets. Revista Mexicana de F´ısica, 65, 404-411.
  • [4] Aygun, M., 2018. Alternative Potentials Analyzing the Scattering Cross Sections of 7,9,10,11,12,14Be Isotopes from a 12C target: Proximity Potentials. Journal of the Korean Physical Society, 73, 1255-1262.
  • [5] Aygun, M., 2018. The application of some nuclear potentials for quasielastic scattering data of the 11Li + 28Si reaction and its consequences. Turkish Journal of Physics, 42, 302-311.
  • [6] Aygun, M., 2018. A Comparison of Proximity Potentials in the Analysis of Heavy-Ion Elastic Cross Sections. Ukrainian Journal of Physics, 63, 881-887.
  • [7] Rashdan, M., Sewailem, Sh. M., 2019. Deformation and orientation effects on reaction cross-sections at intermediate and high energies. International Journal of Modern Physics E, 28, 1950014.
  • [8] Rashdan, M., 2012. Deformation, orientation, and medium effects in 16,19C + C reactions. Physical Review C 86, 044610.
  • [9] Hassan, M.Y.M., Farag, M.Y.H., Abul-Magd, A.Y., Nassar, T.E.I., 2008. Nucleus–nucleus reaction cross sections for deformed nuclei. Physica Scripta,78, 045202.
  • [11] Thompson, I. J., 1988. Coupled reaction channels calculations in nuclear physics. Computer Physics Reports, 7, 167.
  • [12] Möller, P., Sierk, A.J., Ichikawa, T., Sagawac, H., 2016. Nuclear ground-state masses and deformations: FRDM(2012). Atomic Data and Nuclear Data Tables, 109-110, 1-204.
  • [13] Winther, A., 1995. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nuclear Physics A, 594, 203-245.
  • [14] Pahlavani, M.R., Alavi, S.A., Tahanipour, N., 2013. Effect of nuclear deformation on the potential barrier and alpha-decay half-lives of superheavy nuclei. Modern Physics Letters A, 28, 16.
  • [15] Wang, N., Scheid, W., 2008. Quasi-elastic scattering and fusion with a modified Woods-Saxon potential. Physical Review C, 78, 014607.
  • [16] Bohlen, H.G., Stiliaris, E., Gebauer, B., von Oertzen, W., Wilpert, M., Wilpert, Th., Ostrowski, A., Khoa, D. T., Demyanova, A.S., Ogloblin, A.A., 1993. Refractive scattering and reactions, comparison of two systems:16O+16O and 20Ne+12C. Zeitschrift fur Physik A, 346, 189-200.
  • [17] Al-Abdullah, T., Carstoiu, F., Chen, X., Clark, H. L., Fu, C., Gagliardi, C. A., Lui, Y.-W., Mukhamedzhanov, A., Tabacaru, G., Tokimoto, Y., Trache, L., Tribble, R. E., 2010. Physical Review C, 81, 035802.
There are 16 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Aygun 0000-0002-4276-3511

Publication Date June 13, 2021
Submission Date December 17, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

IEEE M. Aygun, “Influence of deformed potentials on elastic scattering reactions involving deformed projectile-spherical target”, Bitlis Eren University Journal of Science and Technology, vol. 11, no. 1, pp. 1–5, 2021, doi: 10.17678/beuscitech.842132.