Research Article
BibTex RIS Cite

Effects of deltamethrin on photosynthetic pigments and ascorbate-glutathione (ASA-GSH) cycle in Lemna minor

Year 2024, Volume: 5 Issue: 2, 38 - 43, 31.12.2024
https://doi.org/10.51539/biotech.1552098

Abstract

Deltamethrin is a synthetic pyrethroid insecticide that can cause adverse effects on non-target organisms. This study was designed to investigate the effects of different concentrations (0.001, 0.005 and 0.01 ppm) of deltamethrin on photosynthetic pigments and the ascorbate-glutathione (ASA-GSH) cycle in Lemna minor, a freshwater macrophyte. To assess the effect of deltamethrin on L. minor, photosynthetic pigments, malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, and the activities of some antioxidant enzymes (SOD, CAT and POD) and enzymatic and non-enzymatic antioxidants associated with the ASA-GSH cycle were measured. The results showed that exposure to deltamethrin decreased chl a, chl b and carotenoid levels and increased MDA and H2O2 levels. In addition, deltamethrin exposure significantly increased SOD, CAT and POD activities. The activities of ASA-GSH cycle enzymes (APX, GR, GPX, MDHAR and DHAR) decreased in L. minor exposed to 0.01 ppm deltamethrin, while GST activity increased. Exposure to low doses of deltamethrin increased ASA and GSH levels, while 0.01 ppm deltamethrin decreased the amounts of ASA and GSH compared to the control. Taken together, the present study revealed that different concentrations of deltamethrin inhibited photosynthetic activity, increased lipid peroxidation and caused oxidative stress and activated the antioxidant defense system of L. minor to eliminate the increased oxidative stress.

References

  • Abdelkhalek NKM, Ghazy EW, Abdel-Daim MM. (2015) Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res 22:3023–3031.
  • Agarwal S, Pandey V. (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant 48, 555-560.
  • Alp FN, Arikan B, Ozfidan-Knakcı C, Gelentürk C, Yildiztugay E, Turan M, Cavusoglu H. (2023) Hormetic activation of nano-sized rare earth element terbium on growth, PSII photochemistry, antioxidant status and phytohormone regulation in Lemna minor. Plant Physiol Biochem 194:361-373.
  • Barlow SM, Sullivan FM, Lines J. (2001) Risk assessment of the use of deltamethrin on bednets for the prevention of malaria. Food Chem Toxicol 39:407-422.
  • Bashir F, Siddiqi TO, Iqbal M. (2007) The antioxidative response system in Glycine max (L.) Merr. exposed to deltamethrin, a synthetic pyrethroid insecticide. Environ Pollut 147:94–100.
  • Duran RE, Kilic S, Coskun Y. (2015) Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin. Pestic Biochem Phys 124:15-20.
  • Foyer CH, Halliwell B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21-25.
  • Gong Y, Toivonen PMA, Lau OL, Wiersma PA. (2001) Antioxidant system level in ‘Braeburn’ apple in related to its browing disorder. Bot Bul Acad Sin 42:259-264.
  • Habig WH, Pabst MJ, Jakoby WB. (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130-7139.
  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M. (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6(8):1314-1323.
  • Huang C, He W, Guo J, Chang X, Su P, Zhang L. (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Experiment Bot 56:3041-3049.
  • Kumar A, Sasmal D, Bhaskar A, Mukhopadhyay K, Thakur A, Sharma N. (2016) Deltamethrin-induced oxidative stress and mitochondrial caspase-dependent sig- naling pathways in murine splenocytes. Environ Toxicol 31:808–819.
  • Li R, Luo C, Qiu J, Li Y, Zhang H, Tan H. (2022) Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor. J Hazard Mater 425:127818.
  • Lu Q, Sun Y, Ares I, Anadón A, Martínez M, Martínez-Larrañaga M-R, Yuan Z, Wang X, Martínez M-A. (2019) Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ Res 170:260-281.
  • Miyake C, Asada K. (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541-553.
  • Nakano Y, Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880.
  • OECD. (2006) OECD guidelines for the testing of chemicals, revised proposal for a new guideline 221, Lemna sp. Growth inhibition test. OECD, Paris.
  • Touzout N, Mehallah H, Moralent R, Nemmiche S, Benkhelifa M. (2021) Co‐contamination of deltamethrin and cadmium induce oxidative stress in tomato plants (Solanum lycopersicum L.). Acta Physiol Plant 43:91.
  • WHO (World Health Organization). (2010) Specifications and evaluations for public health pesticides- deltamethrin. World Health Organization, Geneva.
  • Yee Y, Tam NFY, Wong YS, Lu CY. (2002) Growth and physiological responses of two mangrove species (Bruguira gymnorrhiza and Kandelia candel) to waterlogging. Environ Experiment Bot 1:13.
  • Yu C-W, Murphy TM, Lin C-H. (2003) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30: 955-963.
Year 2024, Volume: 5 Issue: 2, 38 - 43, 31.12.2024
https://doi.org/10.51539/biotech.1552098

Abstract

References

  • Abdelkhalek NKM, Ghazy EW, Abdel-Daim MM. (2015) Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res 22:3023–3031.
  • Agarwal S, Pandey V. (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plant 48, 555-560.
  • Alp FN, Arikan B, Ozfidan-Knakcı C, Gelentürk C, Yildiztugay E, Turan M, Cavusoglu H. (2023) Hormetic activation of nano-sized rare earth element terbium on growth, PSII photochemistry, antioxidant status and phytohormone regulation in Lemna minor. Plant Physiol Biochem 194:361-373.
  • Barlow SM, Sullivan FM, Lines J. (2001) Risk assessment of the use of deltamethrin on bednets for the prevention of malaria. Food Chem Toxicol 39:407-422.
  • Bashir F, Siddiqi TO, Iqbal M. (2007) The antioxidative response system in Glycine max (L.) Merr. exposed to deltamethrin, a synthetic pyrethroid insecticide. Environ Pollut 147:94–100.
  • Duran RE, Kilic S, Coskun Y. (2015) Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin. Pestic Biochem Phys 124:15-20.
  • Foyer CH, Halliwell B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21-25.
  • Gong Y, Toivonen PMA, Lau OL, Wiersma PA. (2001) Antioxidant system level in ‘Braeburn’ apple in related to its browing disorder. Bot Bul Acad Sin 42:259-264.
  • Habig WH, Pabst MJ, Jakoby WB. (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130-7139.
  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M. (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6(8):1314-1323.
  • Huang C, He W, Guo J, Chang X, Su P, Zhang L. (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Experiment Bot 56:3041-3049.
  • Kumar A, Sasmal D, Bhaskar A, Mukhopadhyay K, Thakur A, Sharma N. (2016) Deltamethrin-induced oxidative stress and mitochondrial caspase-dependent sig- naling pathways in murine splenocytes. Environ Toxicol 31:808–819.
  • Li R, Luo C, Qiu J, Li Y, Zhang H, Tan H. (2022) Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor. J Hazard Mater 425:127818.
  • Lu Q, Sun Y, Ares I, Anadón A, Martínez M, Martínez-Larrañaga M-R, Yuan Z, Wang X, Martínez M-A. (2019) Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ Res 170:260-281.
  • Miyake C, Asada K. (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541-553.
  • Nakano Y, Asada K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880.
  • OECD. (2006) OECD guidelines for the testing of chemicals, revised proposal for a new guideline 221, Lemna sp. Growth inhibition test. OECD, Paris.
  • Touzout N, Mehallah H, Moralent R, Nemmiche S, Benkhelifa M. (2021) Co‐contamination of deltamethrin and cadmium induce oxidative stress in tomato plants (Solanum lycopersicum L.). Acta Physiol Plant 43:91.
  • WHO (World Health Organization). (2010) Specifications and evaluations for public health pesticides- deltamethrin. World Health Organization, Geneva.
  • Yee Y, Tam NFY, Wong YS, Lu CY. (2002) Growth and physiological responses of two mangrove species (Bruguira gymnorrhiza and Kandelia candel) to waterlogging. Environ Experiment Bot 1:13.
  • Yu C-W, Murphy TM, Lin C-H. (2003) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30: 955-963.
There are 21 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Enzymes, Aquatic Toxicology
Journal Section Research Articles
Authors

Özkan Aksakal

Handan Uysal

Ebru Gezgincioğlu

Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date September 18, 2024
Acceptance Date November 10, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Aksakal, Ö., Uysal, H., & Gezgincioğlu, E. (2024). Effects of deltamethrin on photosynthetic pigments and ascorbate-glutathione (ASA-GSH) cycle in Lemna minor. Bulletin of Biotechnology, 5(2), 38-43. https://doi.org/10.51539/biotech.1552098
AMA Aksakal Ö, Uysal H, Gezgincioğlu E. Effects of deltamethrin on photosynthetic pigments and ascorbate-glutathione (ASA-GSH) cycle in Lemna minor. Bull. Biotechnol. December 2024;5(2):38-43. doi:10.51539/biotech.1552098
Chicago Aksakal, Özkan, Handan Uysal, and Ebru Gezgincioğlu. “Effects of Deltamethrin on Photosynthetic Pigments and Ascorbate-Glutathione (ASA-GSH) Cycle in Lemna Minor”. Bulletin of Biotechnology 5, no. 2 (December 2024): 38-43. https://doi.org/10.51539/biotech.1552098.
EndNote Aksakal Ö, Uysal H, Gezgincioğlu E (December 1, 2024) Effects of deltamethrin on photosynthetic pigments and ascorbate-glutathione (ASA-GSH) cycle in Lemna minor. Bulletin of Biotechnology 5 2 38–43.
IEEE Ö. Aksakal, H. Uysal, and E. Gezgincioğlu, “Effects of deltamethrin on photosynthetic pigments and ascorbate-glutathione (ASA-GSH) cycle in Lemna minor”, Bull. Biotechnol., vol. 5, no. 2, pp. 38–43, 2024, doi: 10.51539/biotech.1552098.
ISNAD Aksakal, Özkan et al. “Effects of Deltamethrin on Photosynthetic Pigments and Ascorbate-Glutathione (ASA-GSH) Cycle in Lemna Minor”. Bulletin of Biotechnology 5/2 (December 2024), 38-43. https://doi.org/10.51539/biotech.1552098.
JAMA Aksakal Ö, Uysal H, Gezgincioğlu E. Effects of deltamethrin on photosynthetic pigments and ascorbate-glutathione (ASA-GSH) cycle in Lemna minor. Bull. Biotechnol. 2024;5:38–43.
MLA Aksakal, Özkan et al. “Effects of Deltamethrin on Photosynthetic Pigments and Ascorbate-Glutathione (ASA-GSH) Cycle in Lemna Minor”. Bulletin of Biotechnology, vol. 5, no. 2, 2024, pp. 38-43, doi:10.51539/biotech.1552098.
Vancouver Aksakal Ö, Uysal H, Gezgincioğlu E. Effects of deltamethrin on photosynthetic pigments and ascorbate-glutathione (ASA-GSH) cycle in Lemna minor. Bull. Biotechnol. 2024;5(2):38-43.