Review
BibTex RIS Cite

Food grade microalgae-based biopigments and their production technique versus synthetic colorants

Year 2023, , 59 - 64, 31.12.2023
https://doi.org/10.38042/biotechstudies.1310572

Abstract

In the food industry, synthetic color-active compounds can be added as additives to replace natural colors that are damaged during processing. This addition reduces the batch-to-batch fluctuation and increases the development of new or desired products that are appealing to consumers where natural colors are absent. Synthetic colorants cannot be produced by any bioprocess. In contrast, the Food and Drug Administration declared that algae such as Chlorella, Cryptothecodinium, Dunaliella Nannochloropsis, Nitzschia, Phaeodactylum, Schizochytrium, and Spirulina are trustable sources of food pigments as natural sources. These microalgae are photoautotrophic species and can be found on the "Generally Recognized as Safe-GRAS" list of food additives. Microalgae-derived pigments, which are also known as nutraceutical supplements, have been recently used in functional food products. Some of them are used as health and color supporters because of their excellent antioxidant properties that block oxidative reactions in lipid-rich food products. Their unique properties of being harmless to the environment were scientifically proven as well. As a result, the demand for their commercial use is increasing gradually. However, the bioprocess of algae on a huge scale is very limited due to some environmental factors and is hard to produce continuously. The scope of this review was to provide concise knowledge about biopigments extracted from microalgae and their production methods and to clarify the current implementations in the industry. Additionally, food-grade biopigments were compared with synthetic ones. The primary issues with bioprocesses used to produce colorants were highlighted, and as a result, the expected studies were discussed that would be conducted soon.

References

  • Adarme-Vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(1), 96. https://doi.org/10.1186/1475-2859-11-96
  • Berthon, J.-Y., Nachat-Kappes, R., Bey, M., Cadoret, J. P., Renimel, I. & Filaire, E. (2017). Marine algae an attractive source to skin care. Free Radical Research. 510 (6), 555–567. https://doi.org/10.1080/10715762.2017.1355550
  • Bhalamur, G.L., Valerie, O. & Mark, L. (2018). Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research. 230 (3), 229–241. ISSN 1226-1025. http://www.dbpia.co.kr/Article/NODE07417103
  • Chatterjee, A., Singh, S., Agrawal, C., Yadav, S., Rai, R. & Rai, L.C. (2017). Role of Algae as a Biofertilizer. In Algal Green Chemistry, Recent Progress in Biotechnology. https://doi.org/10.1016/B978-0-444-63784-0.00010-2
  • Carocho, M., Barreiro, M. F., Morales, P. & Ferreira, I. C. F. R. (2014). Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Comprehensive reviews in food science and food safety, 13(4), 377–399. https://doi.org/10.1111/1541-4337.12065
  • da Rosa, M. D. H., Alves, C. J., dos Santos, F. N., de Souza, A. O., Zavareze, E. da R., Pinto, E. & Noseda, M. D. (2023). Macroalgae and Microalgae Biomass as Feedstock for Products Applied to Bioenergy and Food Industry: A Brief Review. Energies, 16(4), 1820. http://dx.doi.org/10.3390/en16041820
  • Debnath, S. & Ghosh, D. (2023). Qualitative and Quantitative Studies on Biopigment Producing Algal Regime from Marine Water Resources of Sundarban Region. Journal of Pure and Applied Microbiology 17(1):576-589. https://doi.org/10.22207/JPAM.17.1.55
  • de Oliveira, A. P. F. & Arisseto-Bragotto, A. P. (2022). Microalgae-based products: Food and public health. Future Foods, 6:100157 https://doi.org/10.1016/j.fufo.2022.100157
  • Downham, A., & Collins, P. (2000). Colouring our foods in the last and next millennium. International Journal of Food Science & Technology, 35(1), 5–22. https://doi.org/10.1046/j.1365-2621.2000.00373.x
  • García, J.L., de Vicente, M. & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology 100 (5), 1017–1024. https://doi.org/10.1111/1751-7915.12800
  • Grima, E.M., Fernández, F.G.A. & Robles-Medina, A. (2013). Downstream processing of cell mass and products. In Handbook of Microalgal Culture, 2nd ed. Wiley, 267–309. https://doi.org/10.1002/9781118567166.ch14
  • Hamed, I. (2016). The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety 150 (6), 1104–1123. https://doi.org/10.1111/1541-4337.12227
  • Haoujar, I., Cacciola, F., Abrini, J., Mangraviti, D., Giuffrida, D., Oulad El Majdoub, Y. & Kounnoun, A. (2019). The Contribution of Carotenoids, Phenolic Compounds, and Flavonoids to the Antioxidative Properties of Marine Microalgae Isolated from Mediterranean Morocco. Molecules, 24(22), 4037. http://dx.doi.org/10.3390/molecules24224037
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S. & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36, 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009
  • Imchen, T. & Singh, K.S. (2023). Marine Algae Colorants: Antioxidant, Anti-Diabetic Properties and Applications in Food Industry. Algal Research. 69, 102898. https://doi.org/10.1016/j.algal.2022.102898
  • Jung, F., Krüger-Genge, A., Waldeck, P. & Küpper, J. H. (2019). Spirulina platensis, a super food? Journal of Cellular Biotechnology (5):1, 43-54. https://doi.org/10.3233/JCB-189012
  • Khanra, S., Mondal, M., Halder, G. & Bhowmick T. K. (2018). Downstream processing of microalgae for pigments, protein, and carbohydrate in industrial application: A review. Food and Bioproducts Processing. 110, 60-84. https://doi.org/10.1016/j.fbp.2018.02.002
  • Kratzer, R., & Murkovic, M. (2021). Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production. Foods, 10(7), 1626. https://doi.org/10.3390/foods10071626
  • Lafarga, T. (2020). Cultured Microalgae and Compounds Derived Thereof for Food Applications: Strain Selection and Cultivation, Drying, and Processing Strategies, Food Reviews International, 36:6, 559-583. https://doi.org/10.1080/87559129.2019.1655572
  • Levasseur, W., Perré, P. & Pozzobon, V. (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 41:107545, https://doi.org/10.1016/j.biotechadv.2020.107545.
  • Lis, B., Woźniak, M., Krystofiak, T. & Ratajczak, I. A. (2020). Effect of accelerated aging on the color changes of wood treated with eco-friendly formulations based on propolis and silicon compounds. BioResources. 15:3667–77 https://doi.org/10.15376/biores.15.2.3667-3677
  • Malabadi, R.B., Kolkar K.P. & Chalannavar, R. K., (2022). Plant natural pigment colorants-health benefits: toxicity of synthetic or artificial food colorants. International Journal of Innovation Scientific Research and Review. 4:10, 3418-3429. http://www.journalijisr.com
  • Monte, J., Sá, M., Galinha, C. F., Costa, L., Hoekstrad, H., Brazinha, C. & Crespo, J.G. (2018). Harvesting of Dunaliella salina by membrane filtration at pilot scale. Separation and Purification Technology, 190, 252–260. http://dx.doi.org/10.1016/j.seppur.2017.08.019
  • Mouritsen, O. G. & Vinther Schmidt, C. (2020) A Role for Macroalgae and Cephalopods in Sustainable Eating. Frontiers. Psychol. 11:1402. https://doi.org/10.3389/fpsyg.2020.01402
  • Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N. & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research 42, 101617. https://doi.org/10.1016/j.algal.2019.101617
  • Olas, B., Białecki, J., Urbańska, K., & Bryś, M. (2021). The Effects of Natural and Synthetic Blue Dyes on Human Health: A Review of Current Knowledge and Therapeutic Perspectives. Advances in nutrition (Bethesda, Md.), 12(6), 2301–2311. https://doi.org/10.1093/advances/nmab081
  • Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D. & Kirk, P. M. (2015). A Higher-Level Classification of All Living Organisms. PLoS One 100 (4) https://doi.org/10.1371/journal.pone.0119248
  • Sharma, M., Usmani, Z., Gupta, V. K. & Bhat, R. (2021). Valorisation of fruits and vegetable wastes and by-products to produce natural pigments, Critical Reviews in Biotechnology 41(4):535- 563. https://doi.org/10.1080/07388551.2021.1873240
  • Siqueira, S. F., Queiroz, M. I., Zepka, L. Q., & Jacob-Lopes, E. (2018). Introductory Chapter: Microalgae Biotechnology - A Brief Introduction. https://doi.org/10.5772/intechopen.73250
  • Souza Mesquita, L. M., Martins, M., Pisani, L. P., Ventura, S. P. M., & Rosso, V. V. (2021). Insights on the use of alternative solvents and technologies to recover bio‐based food pigments. Comprehensive Reviews in Food Science and Food Safety, 20(1), 787–818. https://doi.org/10.1111/1541-4337.12685
  • Wang, A., Yan, K., Chu, D., Nazer, M., Lin, N.T., Samaranayake, E. & Chang, J., (2020). Microalgae as a Mainstream Food Ingredient: Demand and Supply Perspective. Microalgae Biotechnology for Food, Health, and High-Value Products. Springer, 29–79 https://doi.org/10.1007/978-981-15-0169-2_2
  • Zhang, R., Grimi, N., Marchal, L., & Vorobiev, E. (2019). Application of high-voltage electrical discharges and high-pressure homogenization for recovery of intracellular compounds from microalgae Parachlorella kessleri. Bioprocess and Biosystems Engineering, 42(1), 29–36. https://doi.org/10.1007/s00449-018-2010-4
Year 2023, , 59 - 64, 31.12.2023
https://doi.org/10.38042/biotechstudies.1310572

Abstract

References

  • Adarme-Vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(1), 96. https://doi.org/10.1186/1475-2859-11-96
  • Berthon, J.-Y., Nachat-Kappes, R., Bey, M., Cadoret, J. P., Renimel, I. & Filaire, E. (2017). Marine algae an attractive source to skin care. Free Radical Research. 510 (6), 555–567. https://doi.org/10.1080/10715762.2017.1355550
  • Bhalamur, G.L., Valerie, O. & Mark, L. (2018). Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research. 230 (3), 229–241. ISSN 1226-1025. http://www.dbpia.co.kr/Article/NODE07417103
  • Chatterjee, A., Singh, S., Agrawal, C., Yadav, S., Rai, R. & Rai, L.C. (2017). Role of Algae as a Biofertilizer. In Algal Green Chemistry, Recent Progress in Biotechnology. https://doi.org/10.1016/B978-0-444-63784-0.00010-2
  • Carocho, M., Barreiro, M. F., Morales, P. & Ferreira, I. C. F. R. (2014). Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Comprehensive reviews in food science and food safety, 13(4), 377–399. https://doi.org/10.1111/1541-4337.12065
  • da Rosa, M. D. H., Alves, C. J., dos Santos, F. N., de Souza, A. O., Zavareze, E. da R., Pinto, E. & Noseda, M. D. (2023). Macroalgae and Microalgae Biomass as Feedstock for Products Applied to Bioenergy and Food Industry: A Brief Review. Energies, 16(4), 1820. http://dx.doi.org/10.3390/en16041820
  • Debnath, S. & Ghosh, D. (2023). Qualitative and Quantitative Studies on Biopigment Producing Algal Regime from Marine Water Resources of Sundarban Region. Journal of Pure and Applied Microbiology 17(1):576-589. https://doi.org/10.22207/JPAM.17.1.55
  • de Oliveira, A. P. F. & Arisseto-Bragotto, A. P. (2022). Microalgae-based products: Food and public health. Future Foods, 6:100157 https://doi.org/10.1016/j.fufo.2022.100157
  • Downham, A., & Collins, P. (2000). Colouring our foods in the last and next millennium. International Journal of Food Science & Technology, 35(1), 5–22. https://doi.org/10.1046/j.1365-2621.2000.00373.x
  • García, J.L., de Vicente, M. & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology 100 (5), 1017–1024. https://doi.org/10.1111/1751-7915.12800
  • Grima, E.M., Fernández, F.G.A. & Robles-Medina, A. (2013). Downstream processing of cell mass and products. In Handbook of Microalgal Culture, 2nd ed. Wiley, 267–309. https://doi.org/10.1002/9781118567166.ch14
  • Hamed, I. (2016). The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety 150 (6), 1104–1123. https://doi.org/10.1111/1541-4337.12227
  • Haoujar, I., Cacciola, F., Abrini, J., Mangraviti, D., Giuffrida, D., Oulad El Majdoub, Y. & Kounnoun, A. (2019). The Contribution of Carotenoids, Phenolic Compounds, and Flavonoids to the Antioxidative Properties of Marine Microalgae Isolated from Mediterranean Morocco. Molecules, 24(22), 4037. http://dx.doi.org/10.3390/molecules24224037
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S. & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36, 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009
  • Imchen, T. & Singh, K.S. (2023). Marine Algae Colorants: Antioxidant, Anti-Diabetic Properties and Applications in Food Industry. Algal Research. 69, 102898. https://doi.org/10.1016/j.algal.2022.102898
  • Jung, F., Krüger-Genge, A., Waldeck, P. & Küpper, J. H. (2019). Spirulina platensis, a super food? Journal of Cellular Biotechnology (5):1, 43-54. https://doi.org/10.3233/JCB-189012
  • Khanra, S., Mondal, M., Halder, G. & Bhowmick T. K. (2018). Downstream processing of microalgae for pigments, protein, and carbohydrate in industrial application: A review. Food and Bioproducts Processing. 110, 60-84. https://doi.org/10.1016/j.fbp.2018.02.002
  • Kratzer, R., & Murkovic, M. (2021). Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production. Foods, 10(7), 1626. https://doi.org/10.3390/foods10071626
  • Lafarga, T. (2020). Cultured Microalgae and Compounds Derived Thereof for Food Applications: Strain Selection and Cultivation, Drying, and Processing Strategies, Food Reviews International, 36:6, 559-583. https://doi.org/10.1080/87559129.2019.1655572
  • Levasseur, W., Perré, P. & Pozzobon, V. (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 41:107545, https://doi.org/10.1016/j.biotechadv.2020.107545.
  • Lis, B., Woźniak, M., Krystofiak, T. & Ratajczak, I. A. (2020). Effect of accelerated aging on the color changes of wood treated with eco-friendly formulations based on propolis and silicon compounds. BioResources. 15:3667–77 https://doi.org/10.15376/biores.15.2.3667-3677
  • Malabadi, R.B., Kolkar K.P. & Chalannavar, R. K., (2022). Plant natural pigment colorants-health benefits: toxicity of synthetic or artificial food colorants. International Journal of Innovation Scientific Research and Review. 4:10, 3418-3429. http://www.journalijisr.com
  • Monte, J., Sá, M., Galinha, C. F., Costa, L., Hoekstrad, H., Brazinha, C. & Crespo, J.G. (2018). Harvesting of Dunaliella salina by membrane filtration at pilot scale. Separation and Purification Technology, 190, 252–260. http://dx.doi.org/10.1016/j.seppur.2017.08.019
  • Mouritsen, O. G. & Vinther Schmidt, C. (2020) A Role for Macroalgae and Cephalopods in Sustainable Eating. Frontiers. Psychol. 11:1402. https://doi.org/10.3389/fpsyg.2020.01402
  • Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N. & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research 42, 101617. https://doi.org/10.1016/j.algal.2019.101617
  • Olas, B., Białecki, J., Urbańska, K., & Bryś, M. (2021). The Effects of Natural and Synthetic Blue Dyes on Human Health: A Review of Current Knowledge and Therapeutic Perspectives. Advances in nutrition (Bethesda, Md.), 12(6), 2301–2311. https://doi.org/10.1093/advances/nmab081
  • Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D. & Kirk, P. M. (2015). A Higher-Level Classification of All Living Organisms. PLoS One 100 (4) https://doi.org/10.1371/journal.pone.0119248
  • Sharma, M., Usmani, Z., Gupta, V. K. & Bhat, R. (2021). Valorisation of fruits and vegetable wastes and by-products to produce natural pigments, Critical Reviews in Biotechnology 41(4):535- 563. https://doi.org/10.1080/07388551.2021.1873240
  • Siqueira, S. F., Queiroz, M. I., Zepka, L. Q., & Jacob-Lopes, E. (2018). Introductory Chapter: Microalgae Biotechnology - A Brief Introduction. https://doi.org/10.5772/intechopen.73250
  • Souza Mesquita, L. M., Martins, M., Pisani, L. P., Ventura, S. P. M., & Rosso, V. V. (2021). Insights on the use of alternative solvents and technologies to recover bio‐based food pigments. Comprehensive Reviews in Food Science and Food Safety, 20(1), 787–818. https://doi.org/10.1111/1541-4337.12685
  • Wang, A., Yan, K., Chu, D., Nazer, M., Lin, N.T., Samaranayake, E. & Chang, J., (2020). Microalgae as a Mainstream Food Ingredient: Demand and Supply Perspective. Microalgae Biotechnology for Food, Health, and High-Value Products. Springer, 29–79 https://doi.org/10.1007/978-981-15-0169-2_2
  • Zhang, R., Grimi, N., Marchal, L., & Vorobiev, E. (2019). Application of high-voltage electrical discharges and high-pressure homogenization for recovery of intracellular compounds from microalgae Parachlorella kessleri. Bioprocess and Biosystems Engineering, 42(1), 29–36. https://doi.org/10.1007/s00449-018-2010-4
There are 32 citations in total.

Details

Primary Language English
Subjects Algology, Bioprocessing, Bioproduction and Bioproducts
Journal Section Review
Authors

Didar Üçüncüoğlu

Early Pub Date June 6, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Üçüncüoğlu, D. (2023). Food grade microalgae-based biopigments and their production technique versus synthetic colorants. Biotech Studies, 32(2), 59-64. https://doi.org/10.38042/biotechstudies.1310572


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services