Bu
çalışmada 24 Mayıs 2014 Kuzey Ege Denizi depreminin kırılma özellikleri
telesismik P ve SH dalga şekilleri kullanılarak araştırılmıştır. Ters çözüm
sonuçları depremin iç merkezinin KD’ sunda konumlanan üç fay pürüzünün
yenilmesi nedeniyle oluştuğu belirlenmiştir. Depremin iç merkezine en yakın
pürüz 10 km derinliğin altında konumlanmış şekilde bulunurken uzak pürüzler ise
10 km derinliğin üzerinde konumlanmış haldedir. En büyük kayma genliği ve
toplam salınan sismik moment sırasıyla 1.2 m ve 2.180 x1019 Nm
olarak bulunmuştur.
[1] AFAD, 2014. 24 Mayıs 2014 Gökçeada Açıkları (Ege Denizi) Depremi (Mw=6.5) Basın Bülteni.
[2] Altinok, Y., Alpar, B., Yaltirak, C. 2003. Tsunami of Şarkoy-Mürefte 1912 Earthquake: Western Marmara, Turkey. In Submarine Landslides and Tsunamis (pp. 33-42). Springer, Dordrecht.
[3] Karabulut, H., Roumelioti, Z., Benetatos, C., Mutlu, A. K., Özalaybey, S., Aktar, M., Kiratzi, A. 2006. A source study of the 6 July 2003 (Mw 5.7) earthquake sequence in the Gulf of Saros (Northern Aegean Sea): seismological evidence for the western continuation of the Ganos fault. Tectonophysics, 412(3-4), 195-216.
[4] KRDAE, 2014. Ulusal Deprem İzleme Merkezi 24 Mayıs 2014 Gökçeada Açıkları Ege Denizi Depremi, Basın Bülteni.
[5] McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanlı I, Seeger H, Tealeb A, Toksoz M.N, Veis G. 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, Journal of Geophysical Research, 105, 5695–5719.
[6] Barka, A. A., Kadinsky‐Cade, K. 1988. Strike‐slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7(3), 663-684.
[7] Emre, Ö., Duman, T. Y., Olgun, Ş., Elmacı, H., Özalp, S. 2012. 1: 250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
[8] Ö. Emre, Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. and Şaroğlu, F. 2013. Scale 1/1.250.000 Turkey Live Fault Map, General Directorate of Mineral Reserach and Exploration special publications series, Ankara, Turkey.
[9] Taymaz, T., Kasahara, J., Hirn, A., and Sato, T. 2001. Investigations of micro-earthquake activity within the Sea of Marmara and surrounding regions by using ocean bottom seismometers (OBS) and land seismographs: initial results. In Proc Symposium Seismotectonics of the north-western Anatolia-Aegean and recent Turkish earthquakes, Istanbul, pp. 42-51.
[10] Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denele, Y., Brun, J., P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monie, P., Gueydan, F., Okay, A., Oberhansli, R., Pourteau, A., Auiger, R., Gadenne, L., Driussi, O. 2012. Aegan Tectonivs: Strain localisation, slab tearing and trench retreat. Tectonophysics, Tecto-125491, 33.
[11] Ambraseys, N. N. 2001. Reassessment of earthquakes, 1900-1999, in the Eastern Mediterranean and the Middle East., Geophysical Journal International, 145, 471-485.
[12] Ambraseys, N. N. 2009. Earthquakes in the eastern Mediterranean and the Middle East: a multidisciplinary study of 2,000 years of seismicity, Cambridge University Press.
[13] Nalbant, S.S., Hubert, A., King, G.C.P. 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea, Journal of Geophysical Research, 103, 24 469–24 486.
[14] Caputo, R., Chatzipetors, A., Pavlides, S., Sboras, S. 2012. The Greek Database of Siesmogenic Sources (GreDaSS): state-of-the-art for northern Greece, Annals of Geophysics, 55, 5. Doi: 10.4401/ag-5168.
[15] Le Pichon, X. and Kreemer, C. 2010. The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323-351.
[16] Nyst, M., and Thatcher, W. 2004. New constraints on the active tectonic deformation of the Aegean, Journal of Geophysical Research, 109, B11406, doi:10.1029/2003JB002830.
[17] Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P. 2010. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488(1-4), 22-30.
[18] Koral, H., Öztürk, H., Hanilçi, N. 2009. Tectonically induced coastal uplift mechanism of Gökçeada Island, northern Aegean Sea, Turkey. Quaternary International, 197(1-2), 43-54.
[19] Horasan, G., Gülen, L., Pinar, A., Kalafat, D., Özel, N., Kuleli, H. S., and Isikara, A. M. 2002. Lithospheric structure of the Marmara and Aegean regions, western Turkey. Bulletin of the Seismological Society of America, 92(1), 322-329.
[20] Kürçer, A., Yalçın, H., Gülen, L., Kalafat, D. 2014. 8 January 2013 Mw = 5.7 North Aegean Sea earthquake and its seismotectonic significance, Geodinamica Acta, DOI: 10.1080/09853111.2014.957503.
[21] Kalafat, D., Kekovali, K., Pinar, A. 2015. Moment tensor inversion of the January 8, 2013 (Mw= 5.7) and May 24, 2014 (Mw 6.8) North Aegean Earthquakes: seismicity and active tectonics of the North Aegean Region, In EGU General Assembly Conference Abstracts.
[22] Saltogianni, V., M. Gianniou, T. Taymaz, S. Yolsal-Çevikbilen, and S. Stiros. 2015. Fault slip source models for the 2014 M 6.9 Samothraki-Gökçeada Earthquake (North Aegean Trough) combining geodetic and seismological observations, Journal of Geophysical Research Solid Earth, 120, 8610–8622, doi:10.1002/2015JB012052.
[23] Kiratzi, A., Tsakiroudi, E., Benetatos, C., and Karakaisis, G. 2016. The 24 May 2014 (Mw6. 8) earthquake (North Aegean Trough): spatiotemporal evolution, source and slip model from teleseismic data, Physics and Chemistry of the Earth, Parts A/B/C, 95, 85-100.
[24] Lay, T. And Wallace, T. C. 1995. Modern Global Seismology (Vol. 58). Elsevier.
[25] Udias, A. and Buforn, E. 1996. Source mechanism of earthquakes from Seismic waves, Third Workshop on 3D modelling of Seismic waves generation propagation and their inversion, Trieate, Italy.
[26] Udias, A. 1999. Principles of Seismology, Cambridge University Press, Cambridge, ISBN 0-521 62434-7.
[27] Utkucu, M., Pınar, A., & Alptekin, Ö. 2002. A detailed slip model for the 1995, October 1, Dinar, Turkey, earthquake (Ms= 6.1) determined from inversion of teleseismic P and SH waveforms. Geophysical Journal International, 151(1), 184-195.
[28] Hartzell, S.H. and Heaton, T.H. 1983. Inversion of strong-ground motion and teleseismic wave form data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bulletin of the Seismological Society of America, 73, 1553 –1583.
[29] Kikuchi, M. and Kanamori, H. 1991. Inversion of complex body wave-III, Bulletin of the Seismological Society of America, 81, 2335-2350.
[30] Yoshida, S. 1992. Waveform inversion for rupture process using a non-flat seafloor model: application to 1986 Andreanof Islands and 1985 Chile earthquake, Tectonophysics, 211, 45-59.
[31] Yoshida, S., Kokhetsu, K., Shıbazakı, B., Sagıya, T., Kato, T. and Yoshıda, Y. 1996. Joint Inversion Of Near- And Far-Field Waveforms And Geodetic Data For Rupture Process Of The 1995 Kobe Earthquake, Journal of Physics of the Earth, 44, 437-454.
[32] Ide, S. and Takeo, M. 1996. Determination of constitutive relations of fault slip based on seismic wave analysis, Journal of Geophysical Research, 102, 27379-27391.
[33] Yagi, Y., Mikumo, T., Pacheco, J., and Reyes, G. 2004. Source rupture process of the Tecomán, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bulletin of the Seismological Society of America, 94(5), 1795-1807.
[34] Langston, C. A., and Helmberger, D. V. 1975. A procedure for modelling shallow dislocation sources. Geophysical Journal International, 42(1), 117-130.
[35] Karabulut, H., Bouin, M.-P., Bouchon, M., Dietrich, M., Cornou, C., and Aktar, M. 2002. The seismicity in the Eastern Marmara Sea after the 17 August 1999 Izmit Earthquake. Bulletin of the Seismological Society of America, 92, 387–393.
[36] Görgün, E., and Görgün, B. 2015. Seismicity of the 24 May 2014 Mw 7.0 Aegean Sea earthquake sequence along the North Aegean trough, Journal of Asian Earth Sciences, 111, 459-469.
[37] Evangelidis, C. P. 2015. Imaging supershear rupture for the 2014 Mw 6.9 Northern Aegean earthquake by backprojection of strong motion waveforms, Geophysical Research Letters, Volume 42, Issue 2, pages 307–315.
[38] Konca, A. O., Cetin, S., Karabulut, H., Reilinger, R., Dogan, U., Ergintav, S., Cakir, Z. and Tari, E. 2018. The 2014, M W6. 9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities. Geophysical Journal International, 213(2), 1113-1120.
[39] Sodoudi, F., Kind, R., Hatzfeld, D., Priestley, K., Hanka, W., Wylegalla, K., Stavrakakis, G., Vafidis., Harjes, H-P. And Bohnhoff, M. 2006. Lithospheric structure of the Aegean obtained from P and S receiver functions, Journal of Geophysical Research: Solid Earth.
Year 2020,
Volume: 9 Issue: 3, 1315 - 1326, 26.09.2020
[1] AFAD, 2014. 24 Mayıs 2014 Gökçeada Açıkları (Ege Denizi) Depremi (Mw=6.5) Basın Bülteni.
[2] Altinok, Y., Alpar, B., Yaltirak, C. 2003. Tsunami of Şarkoy-Mürefte 1912 Earthquake: Western Marmara, Turkey. In Submarine Landslides and Tsunamis (pp. 33-42). Springer, Dordrecht.
[3] Karabulut, H., Roumelioti, Z., Benetatos, C., Mutlu, A. K., Özalaybey, S., Aktar, M., Kiratzi, A. 2006. A source study of the 6 July 2003 (Mw 5.7) earthquake sequence in the Gulf of Saros (Northern Aegean Sea): seismological evidence for the western continuation of the Ganos fault. Tectonophysics, 412(3-4), 195-216.
[4] KRDAE, 2014. Ulusal Deprem İzleme Merkezi 24 Mayıs 2014 Gökçeada Açıkları Ege Denizi Depremi, Basın Bülteni.
[5] McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanlı I, Seeger H, Tealeb A, Toksoz M.N, Veis G. 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, Journal of Geophysical Research, 105, 5695–5719.
[6] Barka, A. A., Kadinsky‐Cade, K. 1988. Strike‐slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7(3), 663-684.
[7] Emre, Ö., Duman, T. Y., Olgun, Ş., Elmacı, H., Özalp, S. 2012. 1: 250.000 Ölçekli Türkiye Diri Fay Haritası Serisi, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
[8] Ö. Emre, Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. and Şaroğlu, F. 2013. Scale 1/1.250.000 Turkey Live Fault Map, General Directorate of Mineral Reserach and Exploration special publications series, Ankara, Turkey.
[9] Taymaz, T., Kasahara, J., Hirn, A., and Sato, T. 2001. Investigations of micro-earthquake activity within the Sea of Marmara and surrounding regions by using ocean bottom seismometers (OBS) and land seismographs: initial results. In Proc Symposium Seismotectonics of the north-western Anatolia-Aegean and recent Turkish earthquakes, Istanbul, pp. 42-51.
[10] Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denele, Y., Brun, J., P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monie, P., Gueydan, F., Okay, A., Oberhansli, R., Pourteau, A., Auiger, R., Gadenne, L., Driussi, O. 2012. Aegan Tectonivs: Strain localisation, slab tearing and trench retreat. Tectonophysics, Tecto-125491, 33.
[11] Ambraseys, N. N. 2001. Reassessment of earthquakes, 1900-1999, in the Eastern Mediterranean and the Middle East., Geophysical Journal International, 145, 471-485.
[12] Ambraseys, N. N. 2009. Earthquakes in the eastern Mediterranean and the Middle East: a multidisciplinary study of 2,000 years of seismicity, Cambridge University Press.
[13] Nalbant, S.S., Hubert, A., King, G.C.P. 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea, Journal of Geophysical Research, 103, 24 469–24 486.
[14] Caputo, R., Chatzipetors, A., Pavlides, S., Sboras, S. 2012. The Greek Database of Siesmogenic Sources (GreDaSS): state-of-the-art for northern Greece, Annals of Geophysics, 55, 5. Doi: 10.4401/ag-5168.
[15] Le Pichon, X. and Kreemer, C. 2010. The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323-351.
[16] Nyst, M., and Thatcher, W. 2004. New constraints on the active tectonic deformation of the Aegean, Journal of Geophysical Research, 109, B11406, doi:10.1029/2003JB002830.
[17] Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P. 2010. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488(1-4), 22-30.
[18] Koral, H., Öztürk, H., Hanilçi, N. 2009. Tectonically induced coastal uplift mechanism of Gökçeada Island, northern Aegean Sea, Turkey. Quaternary International, 197(1-2), 43-54.
[19] Horasan, G., Gülen, L., Pinar, A., Kalafat, D., Özel, N., Kuleli, H. S., and Isikara, A. M. 2002. Lithospheric structure of the Marmara and Aegean regions, western Turkey. Bulletin of the Seismological Society of America, 92(1), 322-329.
[20] Kürçer, A., Yalçın, H., Gülen, L., Kalafat, D. 2014. 8 January 2013 Mw = 5.7 North Aegean Sea earthquake and its seismotectonic significance, Geodinamica Acta, DOI: 10.1080/09853111.2014.957503.
[21] Kalafat, D., Kekovali, K., Pinar, A. 2015. Moment tensor inversion of the January 8, 2013 (Mw= 5.7) and May 24, 2014 (Mw 6.8) North Aegean Earthquakes: seismicity and active tectonics of the North Aegean Region, In EGU General Assembly Conference Abstracts.
[22] Saltogianni, V., M. Gianniou, T. Taymaz, S. Yolsal-Çevikbilen, and S. Stiros. 2015. Fault slip source models for the 2014 M 6.9 Samothraki-Gökçeada Earthquake (North Aegean Trough) combining geodetic and seismological observations, Journal of Geophysical Research Solid Earth, 120, 8610–8622, doi:10.1002/2015JB012052.
[23] Kiratzi, A., Tsakiroudi, E., Benetatos, C., and Karakaisis, G. 2016. The 24 May 2014 (Mw6. 8) earthquake (North Aegean Trough): spatiotemporal evolution, source and slip model from teleseismic data, Physics and Chemistry of the Earth, Parts A/B/C, 95, 85-100.
[24] Lay, T. And Wallace, T. C. 1995. Modern Global Seismology (Vol. 58). Elsevier.
[25] Udias, A. and Buforn, E. 1996. Source mechanism of earthquakes from Seismic waves, Third Workshop on 3D modelling of Seismic waves generation propagation and their inversion, Trieate, Italy.
[26] Udias, A. 1999. Principles of Seismology, Cambridge University Press, Cambridge, ISBN 0-521 62434-7.
[27] Utkucu, M., Pınar, A., & Alptekin, Ö. 2002. A detailed slip model for the 1995, October 1, Dinar, Turkey, earthquake (Ms= 6.1) determined from inversion of teleseismic P and SH waveforms. Geophysical Journal International, 151(1), 184-195.
[28] Hartzell, S.H. and Heaton, T.H. 1983. Inversion of strong-ground motion and teleseismic wave form data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bulletin of the Seismological Society of America, 73, 1553 –1583.
[29] Kikuchi, M. and Kanamori, H. 1991. Inversion of complex body wave-III, Bulletin of the Seismological Society of America, 81, 2335-2350.
[30] Yoshida, S. 1992. Waveform inversion for rupture process using a non-flat seafloor model: application to 1986 Andreanof Islands and 1985 Chile earthquake, Tectonophysics, 211, 45-59.
[31] Yoshida, S., Kokhetsu, K., Shıbazakı, B., Sagıya, T., Kato, T. and Yoshıda, Y. 1996. Joint Inversion Of Near- And Far-Field Waveforms And Geodetic Data For Rupture Process Of The 1995 Kobe Earthquake, Journal of Physics of the Earth, 44, 437-454.
[32] Ide, S. and Takeo, M. 1996. Determination of constitutive relations of fault slip based on seismic wave analysis, Journal of Geophysical Research, 102, 27379-27391.
[33] Yagi, Y., Mikumo, T., Pacheco, J., and Reyes, G. 2004. Source rupture process of the Tecomán, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bulletin of the Seismological Society of America, 94(5), 1795-1807.
[34] Langston, C. A., and Helmberger, D. V. 1975. A procedure for modelling shallow dislocation sources. Geophysical Journal International, 42(1), 117-130.
[35] Karabulut, H., Bouin, M.-P., Bouchon, M., Dietrich, M., Cornou, C., and Aktar, M. 2002. The seismicity in the Eastern Marmara Sea after the 17 August 1999 Izmit Earthquake. Bulletin of the Seismological Society of America, 92, 387–393.
[36] Görgün, E., and Görgün, B. 2015. Seismicity of the 24 May 2014 Mw 7.0 Aegean Sea earthquake sequence along the North Aegean trough, Journal of Asian Earth Sciences, 111, 459-469.
[37] Evangelidis, C. P. 2015. Imaging supershear rupture for the 2014 Mw 6.9 Northern Aegean earthquake by backprojection of strong motion waveforms, Geophysical Research Letters, Volume 42, Issue 2, pages 307–315.
[38] Konca, A. O., Cetin, S., Karabulut, H., Reilinger, R., Dogan, U., Ergintav, S., Cakir, Z. and Tari, E. 2018. The 2014, M W6. 9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities. Geophysical Journal International, 213(2), 1113-1120.
[39] Sodoudi, F., Kind, R., Hatzfeld, D., Priestley, K., Hanka, W., Wylegalla, K., Stavrakakis, G., Vafidis., Harjes, H-P. And Bohnhoff, M. 2006. Lithospheric structure of the Aegean obtained from P and S receiver functions, Journal of Geophysical Research: Solid Earth.
E. Budakoğlu and M. Utkucu, “24 Mayıs 2014 Kuzey Ege Denizi Depreminin (Mw=6.9) Sonlu-Fay Dalga Şekli Ters Çözümü”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 3, pp. 1315–1326, 2020, doi: 10.17798/bitlisfen.634317.