Research Article
BibTex RIS Cite

Elektro Eğirme Yöntemiyle Üretilen TiO2-RGO Kompozit Tabanlı Kuantum Nokta Duyarlı Güneş Pilleri

Year 2020, Volume: 9 Issue: 3, 1171 - 1179, 26.09.2020
https://doi.org/10.17798/bitlisfen.757235

Abstract

Bu çalışmada öncelikle modifiye Hummers metodu kullanılarak grafen oksit (GO) üretilmiştir. Üretilen grafen oksit kimyasal yolla indirgenerek, indirgenmiş grafen oksit (RGO) sentezlenmiştir. Sentezlenen RGO ve TiO2 çözeltileri kullanılarak tek adım elektro eğirme yöntemi ile saf TiO2 ve TiO2-RGO tabanlı fotoanaot yüzeylere sahip kuantum nokta duyarlı güneş pilleri üretilmiştir. Üretilen güneş pillerinin kısa devre akım yoğunluğu (Jsc) ve açık devre gerilimi (Voc) ölçümleri yapılmıştır. Saf TiO2 fotoanota sahip güneş pilinin kısa devre akımı yoğunluğu 0,672 mA/cm2, TiO2-RGO kompozit fotoanota sahip güneş pilinin ise 0,770 mA/cm2 olarak ölçülmüştür. Ayrıca güneş pillerinin 10 kHz-1MHz aralığında kapasite-voltaj (C-V), iletkenlik-voltaj (G-V) ve seri direnç-voltaj (Rs-V) ölçümleri yapılarak ayrıntılı bir şekilde karakterizasyonu yapılmıştır.

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • 1. Hashimoto, H., Muramatsu, Y., Nishina, Y., & Asoh, H. 2019. Bipolar anodic electrochemical exfoliation of graphite powders, Electrochemistry Communications, 104: 106475.
  • 2. Long, C. M., Nascarella, M. A., & Valberg, P. A. 2013. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions, Environmental Pollution, 181: 271–286.
  • 3. Sun, Q., Li, Y.-D., Liu, L., Feng, Z.-B., Lu, P., Wang, Z.-R., & Zhang, X. 2019. Heat-treatment-assisted approach towards scalable synthesis of mesoporous carbons for high-performance lithium-sulfur battery, Materials Letters, 246: 165–168.
  • 4. Popov, V. N. 2004. Carbon nanotubes: properties and application, Materials Science and Engineering: R: Reports, 43 (3): 61–102.
  • 5. Siddiqui, M. T. H., Nizamuddin, S., Baloch, H. A., Mubarak, N. M., Al-Ali, M., Mazari, S. A., Bhutto A.W., Abro, R., Srinivasan, M., Griffin, G. 2019. Fabrication of advance magnetic carbon nano-materials and their potential applications: A review, Journal of Environmental Chemical Engineering, 7 (1): 102812.
  • 6. Yalcin, M., & Yakuphanoglu, F. 2017. Graphene-TiO2 Nanocomposite Photoanode Based on Quantum Dot Solar Cells, Journal of Nanoelectronics and Optoelectronics, 12 (3): 254–259.
  • 7. Ubani, C. A., Ibrahim, M. A., Teridi, M. A. M., Sopian, K., Ali, J., & Chaudhary, K. T. 2016. Application of graphene in dye and quantum dots sensitized solar cell, Solar Energy, 137: 531–550.
  • 8. Ayesh, A. I., Ahmed, R. E., Al-Rashid, M. A., Alarrouqi, R. A., Saleh, B., Abdulrehman, T., Haik, Y., Al-Sulaiti, L. A. 2018. Selective gas sensors using graphene and CuO nanorods, Sensors and Actuators A: Physical, 283: 107–112.
  • 9. Zhu, H., Wei, J., Wang, K., & Wu, D. 2009. Applications of carbon materials in photovoltaic solar cells, Solar Energy Materials and Solar Cells, 93(9): 1461–1470. 10. Tsai, T.-H., Chiou, S.-C., & Chen, S.-M. 2011. Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode, Int. J. Electrochem. Sci, 6(8): 3333–3343.
  • 11. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N.M.R., Geim, A. K. 2008. Fine structure constant defines visual transparency of graphene, Science, 320 (5881): 1308–1308.
  • 12. Park, S., & Ruoff, R. S. 2009. Chemical methods for the production of graphenes, Nature nanotechnology, 4 (4): 217.
  • 13. Liu, J., Tang, J., & Gooding, J. J. 2012. Strategies for chemical modification of graphene and applications of chemically modified graphene, Journal of Materials Chemistry, 22 (25): 12435–12452.
  • 14. Shen, J., Yan, B., Shi, M., Ma, H., Li, N., & Ye, M. 2011. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets, Journal of Materials Chemistry, 21 (10): 3415–3421.
  • 15. Shen, J., Shi, M., Yan, B., Ma, H., Li, N., & Ye, M. 2011. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites, Nano Research, 4 (8): 795.
  • 16. Zhu, P., Nair, A. S., Shengjie, P., Shengyuan, Y., & Ramakrishna, S. 2012. Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning, ACS applied materials & interfaces, 4 (2): 581–585.
  • 17. He, Z., Guai, G., Liu, J., Guo, C., Loo, J. S. C., Li, C. M., & Tan, T. T. Y. 2011. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells, Nanoscale, 3 (11): 4613–4616.
  • 18. Hummers Jr, W. S., & Offeman, R. E. 1958. Preparation of graphitic oxide, Journal of the american chemical society, 80 (6): 1339–1339.
  • 19. Madhavan, A. A., Kalluri, S., Chacko, D. K., Arun, T. A., Nagarajan, S., Subramanian, K. R., Nair, A.S., Nair, V.S., Balakrishnan, A. 2012. Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes, RSC Advances, 2 (33): 13032–13037.
  • 20. Santra, P. K., & Kamat, P. V. 2012. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%, Journal of the American Chemical Society, 134 (5): 2508–2511.
  • 21. Zhao, J., Wu, J., Yu, F., Zhang, X., Lan, Z., & Lin, J. 2013. Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode, Electrochimica Acta, 96: 110–116.
  • 22. Kamat, P. V. 2012. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer, Accounts of chemical research, 45 (11): 1906–1915.
  • 23. Mora-Sero, I., Gimenez, S., Fabregat-Santiago, F., Gómez, R., Shen, Q., Toyoda, T., & Bisquert, J. 2009. Recombination in quantum dot sensitized solar cells, Accounts of chemical research, 42 (11): 1848–1857.
  • 24. Jun, H. K., Careem, M. A., & Arof, A. K. 2013. Quantum dot-sensitized solar cells-perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers, Renewable and Sustainable Energy Reviews, 22: 148–167.
  • 25. Yahia, I. S., Hafez, H. S., Yakuphanoglu, F., Senkal, B. F., & Mottaleb, M. A. 2011. Photovoltaic and impedance spectroscopy analysis of p–n like junction for dye sensitized solar cell, Synthetic metals, 161(13–14): 1299–1305.
  • 26. Subalakshmi, K., & Senthilselvan, J. 2018. Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency, Solar Energy, 171: 914–928.
Year 2020, Volume: 9 Issue: 3, 1171 - 1179, 26.09.2020
https://doi.org/10.17798/bitlisfen.757235

Abstract

Project Number

yok

References

  • 1. Hashimoto, H., Muramatsu, Y., Nishina, Y., & Asoh, H. 2019. Bipolar anodic electrochemical exfoliation of graphite powders, Electrochemistry Communications, 104: 106475.
  • 2. Long, C. M., Nascarella, M. A., & Valberg, P. A. 2013. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions, Environmental Pollution, 181: 271–286.
  • 3. Sun, Q., Li, Y.-D., Liu, L., Feng, Z.-B., Lu, P., Wang, Z.-R., & Zhang, X. 2019. Heat-treatment-assisted approach towards scalable synthesis of mesoporous carbons for high-performance lithium-sulfur battery, Materials Letters, 246: 165–168.
  • 4. Popov, V. N. 2004. Carbon nanotubes: properties and application, Materials Science and Engineering: R: Reports, 43 (3): 61–102.
  • 5. Siddiqui, M. T. H., Nizamuddin, S., Baloch, H. A., Mubarak, N. M., Al-Ali, M., Mazari, S. A., Bhutto A.W., Abro, R., Srinivasan, M., Griffin, G. 2019. Fabrication of advance magnetic carbon nano-materials and their potential applications: A review, Journal of Environmental Chemical Engineering, 7 (1): 102812.
  • 6. Yalcin, M., & Yakuphanoglu, F. 2017. Graphene-TiO2 Nanocomposite Photoanode Based on Quantum Dot Solar Cells, Journal of Nanoelectronics and Optoelectronics, 12 (3): 254–259.
  • 7. Ubani, C. A., Ibrahim, M. A., Teridi, M. A. M., Sopian, K., Ali, J., & Chaudhary, K. T. 2016. Application of graphene in dye and quantum dots sensitized solar cell, Solar Energy, 137: 531–550.
  • 8. Ayesh, A. I., Ahmed, R. E., Al-Rashid, M. A., Alarrouqi, R. A., Saleh, B., Abdulrehman, T., Haik, Y., Al-Sulaiti, L. A. 2018. Selective gas sensors using graphene and CuO nanorods, Sensors and Actuators A: Physical, 283: 107–112.
  • 9. Zhu, H., Wei, J., Wang, K., & Wu, D. 2009. Applications of carbon materials in photovoltaic solar cells, Solar Energy Materials and Solar Cells, 93(9): 1461–1470. 10. Tsai, T.-H., Chiou, S.-C., & Chen, S.-M. 2011. Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode, Int. J. Electrochem. Sci, 6(8): 3333–3343.
  • 11. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N.M.R., Geim, A. K. 2008. Fine structure constant defines visual transparency of graphene, Science, 320 (5881): 1308–1308.
  • 12. Park, S., & Ruoff, R. S. 2009. Chemical methods for the production of graphenes, Nature nanotechnology, 4 (4): 217.
  • 13. Liu, J., Tang, J., & Gooding, J. J. 2012. Strategies for chemical modification of graphene and applications of chemically modified graphene, Journal of Materials Chemistry, 22 (25): 12435–12452.
  • 14. Shen, J., Yan, B., Shi, M., Ma, H., Li, N., & Ye, M. 2011. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets, Journal of Materials Chemistry, 21 (10): 3415–3421.
  • 15. Shen, J., Shi, M., Yan, B., Ma, H., Li, N., & Ye, M. 2011. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites, Nano Research, 4 (8): 795.
  • 16. Zhu, P., Nair, A. S., Shengjie, P., Shengyuan, Y., & Ramakrishna, S. 2012. Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning, ACS applied materials & interfaces, 4 (2): 581–585.
  • 17. He, Z., Guai, G., Liu, J., Guo, C., Loo, J. S. C., Li, C. M., & Tan, T. T. Y. 2011. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells, Nanoscale, 3 (11): 4613–4616.
  • 18. Hummers Jr, W. S., & Offeman, R. E. 1958. Preparation of graphitic oxide, Journal of the american chemical society, 80 (6): 1339–1339.
  • 19. Madhavan, A. A., Kalluri, S., Chacko, D. K., Arun, T. A., Nagarajan, S., Subramanian, K. R., Nair, A.S., Nair, V.S., Balakrishnan, A. 2012. Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes, RSC Advances, 2 (33): 13032–13037.
  • 20. Santra, P. K., & Kamat, P. V. 2012. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%, Journal of the American Chemical Society, 134 (5): 2508–2511.
  • 21. Zhao, J., Wu, J., Yu, F., Zhang, X., Lan, Z., & Lin, J. 2013. Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode, Electrochimica Acta, 96: 110–116.
  • 22. Kamat, P. V. 2012. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer, Accounts of chemical research, 45 (11): 1906–1915.
  • 23. Mora-Sero, I., Gimenez, S., Fabregat-Santiago, F., Gómez, R., Shen, Q., Toyoda, T., & Bisquert, J. 2009. Recombination in quantum dot sensitized solar cells, Accounts of chemical research, 42 (11): 1848–1857.
  • 24. Jun, H. K., Careem, M. A., & Arof, A. K. 2013. Quantum dot-sensitized solar cells-perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers, Renewable and Sustainable Energy Reviews, 22: 148–167.
  • 25. Yahia, I. S., Hafez, H. S., Yakuphanoglu, F., Senkal, B. F., & Mottaleb, M. A. 2011. Photovoltaic and impedance spectroscopy analysis of p–n like junction for dye sensitized solar cell, Synthetic metals, 161(13–14): 1299–1305.
  • 26. Subalakshmi, K., & Senthilselvan, J. 2018. Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency, Solar Energy, 171: 914–928.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Mesut Yalçın 0000-0002-6171-3018

Project Number yok
Publication Date September 26, 2020
Submission Date June 24, 2020
Acceptance Date July 13, 2020
Published in Issue Year 2020 Volume: 9 Issue: 3

Cite

IEEE M. Yalçın, “Elektro Eğirme Yöntemiyle Üretilen TiO2-RGO Kompozit Tabanlı Kuantum Nokta Duyarlı Güneş Pilleri”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 3, pp. 1171–1179, 2020, doi: 10.17798/bitlisfen.757235.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS