Research Article
BibTex RIS Cite

IBM-1 Model ile çift-çift Fe İzotoplarının Nükleer Özelliklerinin İncelenmesi

Year 2021, Volume: 10 Issue: 1, 82 - 90, 21.03.2021
https://doi.org/10.17798/bitlisfen.848560

Abstract

Bu çalışmada, A50 bölgesindeki bulunan bazı çift-çift Fe izotoplarının nükleer yapı özellikleri etkileşen bozon modeli–1 (IBM-1) ile incelenmiştir. Bu incelemede, çift-çift 50,52,56,58Fe izotoplarının enerji seviyeleri ve elektromanyetik geçiş oranları hesaplanmıştır. Hesaplamalar, temel banttaki ilk 4_1^+ ve 2_1^+ seviyelerinin oranlarını ("R" _("4" ^"+" "/" "2" ^"+" )), deneysel verileri bilinen diğer enerji seviyelerini, B(E2) geçiş değerlerini ve bunların oranlarını içermektedir. Öncelikle, incelenen izotopların deneysel enerji oranlarına bakılarak uygun model Hamiltonyeni oluşturulmuş ve sonra bu Hamiltonyenin parametreleri deneysel verilerden yola çıkılarak türetilmiştir. Daha sonra, bu izotopların enerji seviyeleri ve B(E2) geçiş değerleri hesaplanmış ve deneysel veriler ile karşılaştırılmıştır. Ayrıca, yapısal davranışları hakkında fikir sahibi olmak için 50,52,56,58Fe izotoplarının "R" _("4" ^"+" "/" "2" ^"+" )=E(4_1^+ )/E(2_1^+ ), "R" _("0" ^"+" "/" "2" ^"+" )=E(0_2^+ )/E(2_1^+ ), "R" _"1" (E2)=B(E2:4_1^+→2_1^+)/B(E2:2_1^+→0_1^+) ve "R" _"2" (E2)=B(E2:0_2^+→2_1^+)/B(E2:2_1^+→0_1^+) oranlarının nötron sayılarına göre değişimi incelenmiştir

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

119F127

Thanks

Bu çalışma 119F127 numaralı Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) projesi ile desteklenmiştir.

References

  • National Nuclear Data Center (NNDC).2020. https:nndc.bnl.gov (Erişim Tarihi: 15.06.2020).
  • Bai H.B., Li X.W. 2011. Shape phase transition in neutron-rich even-even light nuclei with Z=20-28. Chinese Physics C, 35: 925-929.
  • Pritychenko B., Choquette J., Horoi M., Karamy B., Singh B. 2012. An update of the B(E2) evaluation for 0_1^+→2_1^+ transitions in even–even nuclei near N∼Z∼28. Atomic Data and Nuclear Data Tables, 98: 798-811.
  • Pritychenko B., Birch M., Singh B., Horoi M. 2016. Tables of E2 transition probabilities from the first 2+ states in even–even nuclei. Atomic Data and Nuclear Data Tables, 107: 1-139.
  • Kaneko K., Mizusaki T., Sun Y., Tazaki S. 2014. Toward a unified realistic shell-model Hamiltonian with the monopole-based universal force. Physical Review C 89, 011302 (R): 1-5.
  • Coraggio L., Covello A., Gargano A., Itaco N. 2014. Realistic shell-model calculations for isotopic chains “north-east” of 48Ca in the (N,Z) plane. Physical Review C 89, 024319: 1-12.
  • Kotila J., Lenzi S.M. 2014. Collective features of Cr and Fe isotopes, Physical Review C 89, 064304: 1-8.
  • Jiao C.F., Pei J.C., Xu F.R. 2014. Beyond-mean-field calculations of collectivities of neutron-rich Fe and Cr isotopes. Physical Review C 90, 054314: 1-6.
  • Karampagia S., Zelevinsky V. 2016. Nuclear shape transitions, level density, and underlying interactions. Physical Review C 94, 014321: 1-10.
  • Heyde K. 2004. Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach. Third Edition, Institute of Physics Publishers, Bristol and Philadelphia, 1-638.
  • Iachello F., Arima A. 1987. The Interacting Boson Model. Cambridge University Press, 1-250.
  • Casten R.F., Warner D.D. 1988. The interacting boson approximation. Reviews of Modern Physics, 60: 389-469.
  • Casten R.F. 2006. Shape phase transitions and critical-point phenomena in atomic nuclei. Nature Physics, 2: 811-820.
  • Cejnar P., Jolie J. 2009. Quantum phase transitions in the interacting boson model. Progress in Particle and Nuclear Physics, 62: 210-256.
  • Cejnar P., Jolie J., Casten R.F. 2010. Quantum phase transitions in the shapes of atomic nuclei. Reviews of Modern Physics, 82: 2155-2212.
  • Feshbach H., Iachello F. 1973. The interacting boson model structure of 160. Physics Letters, 45B: 7-11.
  • Feshbach H., Iachello F. 1974. The interacting boson model. Annals of Physics, 84: 211-231.
  • Iachello F. 2000. Dynamic Symmetries at the Critical Point. Phys. Rev. Lett., 85: 3580-3583.
  • Iachello F. 2001. Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Physical Review Letters 87, 052502: 1-4.
  • Scholten O. 1979. The program package PHINT.
  • Arias J.M. 2001. E2 transitions and quadrupole moments in the E(5) symmetry. Phys. Rev. C 63, 034308: 1-5.
  • Caprio M.A. 2002. Finite well solution for the E(5) Hamiltonian. Physical Review C 65, 031304(R): 1-4.
  • Nabi J.U., Böyükata M., Ullah A., Riaz M. 2020. Nuclear structure properties of even-even chromium isotopes and the effect of deformation on calculated electron capture cross sections. Nuclear Physics A 1002, 121985: 1-19.
  • Ullah A., Riaz M., Nabi J.U., Böyükata M., Çakmak N. 2020. Effect of deformation on gamow-teller strength and electron capture cross-section for isotopes of chromium. Bitlis Eren University Journal of Science and Technology, 10: 25-29.
  • Bayram T. 2012. An investigation on shape evolution of Ti isotopes with Hartree-Fock-Bogoliubov theory, Modern Physics Letter A 27(28), 1250162 1-13.
  • Şahin Y., Böyükata M. 2021. Description of even-even Ti isotopes within IBM-1 model. Cumhuriyet Science Journal, 42 (1).
Year 2021, Volume: 10 Issue: 1, 82 - 90, 21.03.2021
https://doi.org/10.17798/bitlisfen.848560

Abstract

Project Number

119F127

References

  • National Nuclear Data Center (NNDC).2020. https:nndc.bnl.gov (Erişim Tarihi: 15.06.2020).
  • Bai H.B., Li X.W. 2011. Shape phase transition in neutron-rich even-even light nuclei with Z=20-28. Chinese Physics C, 35: 925-929.
  • Pritychenko B., Choquette J., Horoi M., Karamy B., Singh B. 2012. An update of the B(E2) evaluation for 0_1^+→2_1^+ transitions in even–even nuclei near N∼Z∼28. Atomic Data and Nuclear Data Tables, 98: 798-811.
  • Pritychenko B., Birch M., Singh B., Horoi M. 2016. Tables of E2 transition probabilities from the first 2+ states in even–even nuclei. Atomic Data and Nuclear Data Tables, 107: 1-139.
  • Kaneko K., Mizusaki T., Sun Y., Tazaki S. 2014. Toward a unified realistic shell-model Hamiltonian with the monopole-based universal force. Physical Review C 89, 011302 (R): 1-5.
  • Coraggio L., Covello A., Gargano A., Itaco N. 2014. Realistic shell-model calculations for isotopic chains “north-east” of 48Ca in the (N,Z) plane. Physical Review C 89, 024319: 1-12.
  • Kotila J., Lenzi S.M. 2014. Collective features of Cr and Fe isotopes, Physical Review C 89, 064304: 1-8.
  • Jiao C.F., Pei J.C., Xu F.R. 2014. Beyond-mean-field calculations of collectivities of neutron-rich Fe and Cr isotopes. Physical Review C 90, 054314: 1-6.
  • Karampagia S., Zelevinsky V. 2016. Nuclear shape transitions, level density, and underlying interactions. Physical Review C 94, 014321: 1-10.
  • Heyde K. 2004. Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach. Third Edition, Institute of Physics Publishers, Bristol and Philadelphia, 1-638.
  • Iachello F., Arima A. 1987. The Interacting Boson Model. Cambridge University Press, 1-250.
  • Casten R.F., Warner D.D. 1988. The interacting boson approximation. Reviews of Modern Physics, 60: 389-469.
  • Casten R.F. 2006. Shape phase transitions and critical-point phenomena in atomic nuclei. Nature Physics, 2: 811-820.
  • Cejnar P., Jolie J. 2009. Quantum phase transitions in the interacting boson model. Progress in Particle and Nuclear Physics, 62: 210-256.
  • Cejnar P., Jolie J., Casten R.F. 2010. Quantum phase transitions in the shapes of atomic nuclei. Reviews of Modern Physics, 82: 2155-2212.
  • Feshbach H., Iachello F. 1973. The interacting boson model structure of 160. Physics Letters, 45B: 7-11.
  • Feshbach H., Iachello F. 1974. The interacting boson model. Annals of Physics, 84: 211-231.
  • Iachello F. 2000. Dynamic Symmetries at the Critical Point. Phys. Rev. Lett., 85: 3580-3583.
  • Iachello F. 2001. Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Physical Review Letters 87, 052502: 1-4.
  • Scholten O. 1979. The program package PHINT.
  • Arias J.M. 2001. E2 transitions and quadrupole moments in the E(5) symmetry. Phys. Rev. C 63, 034308: 1-5.
  • Caprio M.A. 2002. Finite well solution for the E(5) Hamiltonian. Physical Review C 65, 031304(R): 1-4.
  • Nabi J.U., Böyükata M., Ullah A., Riaz M. 2020. Nuclear structure properties of even-even chromium isotopes and the effect of deformation on calculated electron capture cross sections. Nuclear Physics A 1002, 121985: 1-19.
  • Ullah A., Riaz M., Nabi J.U., Böyükata M., Çakmak N. 2020. Effect of deformation on gamow-teller strength and electron capture cross-section for isotopes of chromium. Bitlis Eren University Journal of Science and Technology, 10: 25-29.
  • Bayram T. 2012. An investigation on shape evolution of Ti isotopes with Hartree-Fock-Bogoliubov theory, Modern Physics Letter A 27(28), 1250162 1-13.
  • Şahin Y., Böyükata M. 2021. Description of even-even Ti isotopes within IBM-1 model. Cumhuriyet Science Journal, 42 (1).
There are 26 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Gül Çakır Oruç 0000-0001-5355-0899

Mahmut Böyükata 0000-0002-8065-9993

Project Number 119F127
Publication Date March 21, 2021
Submission Date December 28, 2020
Acceptance Date March 1, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

IEEE G. Çakır Oruç and M. Böyükata, “IBM-1 Model ile çift-çift Fe İzotoplarının Nükleer Özelliklerinin İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 1, pp. 82–90, 2021, doi: 10.17798/bitlisfen.848560.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS