Research Article
BibTex RIS Cite

Ti-27Ni-20Nb-3V Alaşımın Faz Dönüşüm Sıcaklıkları, Korozyon Direnci ve Yapısal Özelliklerinin İncelenmesi

Year 2021, Volume: 10 Issue: 3, 796 - 802, 17.09.2021
https://doi.org/10.17798/bitlisfen.905380

Abstract

Bu çalışmada Ti-27Ni-20Nb-3V (% at.) alaşımı ark-ergitme yöntemi ile üretildi. Üretilen alaşım 850 ℃ de 24 saat homojenleştirildikten sonra, faz dönüşüm sıcaklıkları, mikro-yapısı, elektrokimyasal aşınma direnci, mikrosertlik gibi fiziksel ve kimyasal özellikleri araştırıldı. DSC yardımıyla faz dönüşüm sıcaklıkları austenite-martensite faz geçişlerinin oda sıcaklığının altında olduğu belirlendi. Optik mikroskop (OM) ve SEM görüntülerinde alaşımın dentrik yapıdan oluştuğu, XRD patterninde -Nb, B2 ve B19/ piklerine rastlandı. Ayrıca, yapılan hesaplamalar sonucu kristalit tane boyutu yaklaşık 39,65 nm olarak hesaplandı. Oda sıcaklığında SBF’de (yapay vücut sıvısı) yapılan elektrokimyasal analizi sonucu korozyon direnci 8,09x10-5 mmpy olarak hesaplandı. Mikrosertlik ölçümlerinde alaşımın mikrosertliği beş ayrı bölgeden alınarak ortalama 810 HV olarak bulundu.

Supporting Institution

tubitak

Project Number

119M300

References

  • [1] Stöckel D. 1995. The shape memory effect-phenomenon, alloys and applications. Proceedings: Shape Memory Alloys for Power Systems EPRI, 1: 1-13.
  • [2] Sathiya P., Ramesh T. 2017. Experimental investigation and characterization of laser welded NiTinol shape memory alloys. Journal of Manufacturing Processes, 25: 253-261.
  • [3] Jani J. M., Leary M., Subic A., Gibson M. A. 2014. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56: 1078-1113.
  • [4] Elahinia M. H., Hashemi M., Tabesh M., Bhaduri S. B. 2012. Manufacturing and processing of NiTi implants: a review. Progress in Materials Science, 57 (5): 911-946.
  • [5] Dagdelen F., Aydogdu Y. 2019. Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. Journal of Thermal Analysis and Calorimetry, 136 (2): 637-642.
  • [6] Tabesh M. 2010. Finite element analysis of shape memory alloy biomedical devices: University of Toledo.
  • [7] Dagdelen F., Kok M., Qader I. 2019. Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International, 25 (6): 1420-1427.
  • [8] Buytoz S., Dagdelen F., Qader I., Kok M., Tanyildizi B. 2019. Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition. Metals and Materials International, 1-12. doi:https://doi.org/10.1007/s12540-019-00444-7.
  • [9] Dagdelen F., Balci E., Qader I., Ozen E., Kok M., Kanca M., Abdullah S., Mohammed S. 2020. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM Journal of the Minerals Metals and Materials Society, 72 (4): 1664-1672.
  • [10] Balci E., Dagdelen F., Qader I.N., Kok M. 2021. Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus, 136 (2): 1-13.
  • [11] Kim H., Sasaki T., Okutsu K., Kim J., Inamura T., Hosoda H., Miyazaki S. 2006. Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Materialia, 54 (2): 423-433.
  • [12] Ercan E., Dağdelen F. 2020. TiNb-esaslı β-Ti Alaşımlarının Kristal Yapı, Mikroyapı ve Dönüşüm Sıcaklıklarına Tantal Katkısının Etkileri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9 (4): 1545-1553.
  • [13] Dubinskiy S., Brailovski V., Prokoshkin S., Pushin V., Inaekyan K., Sheremetyev V., Petrzhik M., Filonov M. 2013. Structure and properties of Ti-19.7 Nb-5.8 Ta shape memory alloy subjected to thermomechanical processing including aging. Journal of materials engineering and performance, 22 (9): 2656-2664.
  • [14] Zhang C., Wang Y., Chai W., Zhao L. 1991. The study of constitutional phases in a Ni47Ti44Nb9 shape memory alloy. Materials Chemistry and Physics, 28 (1): 43-50.
  • [15] Kök M., Al-Jaf A.O.A., Çirak Z.D., Qader I.N., Özen E. 2020. Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry, 139 (6): 3405-3413.
  • [16] Patterson A.L. 1939. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56 (10): 978-982.
  • [17] Kök M., Qader I.N., Mohammed S.S., Öner E., Dağdelen F., Aydogdu Y. 2019. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express, 7 (1): 015702. doi:10.1088/2053-1591/ab5bef.
  • [18] Mohammed S.S., Kok M., Qader I.N., Kanca M.S., Ercan E., Dağdelen F., Aydoğdu Y. 2020. Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science, 44 (4): 1167-1175.
  • [19] Qader I.N., Ercan E., Faraj B.A.M., Kok M., Dagdelen F., Aydogdu Y. 2020. The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79–Al12–Ni4–Nb5 (wt%) Shape Memory Alloy. Iranian Journal of Science and Technology, Transactions A: Science, 44 (3): 903-910.
  • [20] Qader I.N., Öner E., Kok M., Mohammed S.S., Dağdelen F., Kanca M.S., Aydoğdu Y. 2020. Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science, doi:10.1007/s40995-020-01008-w.
  • [21] Qader I.N., Kok M., Cirak Z.D. 2020. The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry, 1-10.
  • [22] Tatar C., Acar R., Qader I.N. 2020. Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. The European Physical Journal Plus, 135 (3): 1-11.
  • [23] Cisse O., Savadogo O., Wu M., Yahia L.H. 2002. Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 61 (3): 339-345.
  • [24] Zhou L., Lv G.-H., Ji C., Yang S.-Z. 2012. Application of plasma polymerized siloxane films for the corrosion protection of titanium alloy. Thin Solid Films, 520 (7): 2505-2509.
  • [25] Pakshir M., Bagheri T., Kazemi M. 2013. In vitro evaluation of the electrochemical behaviour of stainless steel and Ni-Ti orthodontic archwires at different temperatures. The European Journal of Orthodontics, 35 (4): 407-413.

Investigation of Phase Transformation Temperature, Corrosion Resistance and Structural Properties of Ti-27Ni-20Nb-3V Shape Memory Alloy

Year 2021, Volume: 10 Issue: 3, 796 - 802, 17.09.2021
https://doi.org/10.17798/bitlisfen.905380

Abstract

In this study Ti-27Ni-20Nb-3V (% at.) alloy was produced by arc- melting method. After the produced alloy was homogenized at 850 ℃ for 24 hours, its pysical and chemical properties such as phase transformation temperatures, micro-structure, electro chemical wear resistance, microhardness were investigated. Phase transformation temperatures were determined with the help of DSC that autenite-martensite phase transitions were below room temperature. In optical microscope (OM) and SEM images, -Nb, B2 ve B19/ were found in XRD pattern, where the alloy is composed of dendritic structure. In addition, as a result of the calculations, the crystallite particle size was calculated as approximately 39,65 nm. Corrosion resistance was calculated as 8,09x10-5 mmpy as a result of electrochemical analysis performed in SBF (artificial body fluid) at room temperature. In microhardness measurements, the microhardness of the alloys was taken from five different regions and found to be 810 HV on average.

Project Number

119M300

References

  • [1] Stöckel D. 1995. The shape memory effect-phenomenon, alloys and applications. Proceedings: Shape Memory Alloys for Power Systems EPRI, 1: 1-13.
  • [2] Sathiya P., Ramesh T. 2017. Experimental investigation and characterization of laser welded NiTinol shape memory alloys. Journal of Manufacturing Processes, 25: 253-261.
  • [3] Jani J. M., Leary M., Subic A., Gibson M. A. 2014. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56: 1078-1113.
  • [4] Elahinia M. H., Hashemi M., Tabesh M., Bhaduri S. B. 2012. Manufacturing and processing of NiTi implants: a review. Progress in Materials Science, 57 (5): 911-946.
  • [5] Dagdelen F., Aydogdu Y. 2019. Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. Journal of Thermal Analysis and Calorimetry, 136 (2): 637-642.
  • [6] Tabesh M. 2010. Finite element analysis of shape memory alloy biomedical devices: University of Toledo.
  • [7] Dagdelen F., Kok M., Qader I. 2019. Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Metals and Materials International, 25 (6): 1420-1427.
  • [8] Buytoz S., Dagdelen F., Qader I., Kok M., Tanyildizi B. 2019. Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition. Metals and Materials International, 1-12. doi:https://doi.org/10.1007/s12540-019-00444-7.
  • [9] Dagdelen F., Balci E., Qader I., Ozen E., Kok M., Kanca M., Abdullah S., Mohammed S. 2020. Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM Journal of the Minerals Metals and Materials Society, 72 (4): 1664-1672.
  • [10] Balci E., Dagdelen F., Qader I.N., Kok M. 2021. Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus, 136 (2): 1-13.
  • [11] Kim H., Sasaki T., Okutsu K., Kim J., Inamura T., Hosoda H., Miyazaki S. 2006. Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Materialia, 54 (2): 423-433.
  • [12] Ercan E., Dağdelen F. 2020. TiNb-esaslı β-Ti Alaşımlarının Kristal Yapı, Mikroyapı ve Dönüşüm Sıcaklıklarına Tantal Katkısının Etkileri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9 (4): 1545-1553.
  • [13] Dubinskiy S., Brailovski V., Prokoshkin S., Pushin V., Inaekyan K., Sheremetyev V., Petrzhik M., Filonov M. 2013. Structure and properties of Ti-19.7 Nb-5.8 Ta shape memory alloy subjected to thermomechanical processing including aging. Journal of materials engineering and performance, 22 (9): 2656-2664.
  • [14] Zhang C., Wang Y., Chai W., Zhao L. 1991. The study of constitutional phases in a Ni47Ti44Nb9 shape memory alloy. Materials Chemistry and Physics, 28 (1): 43-50.
  • [15] Kök M., Al-Jaf A.O.A., Çirak Z.D., Qader I.N., Özen E. 2020. Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry, 139 (6): 3405-3413.
  • [16] Patterson A.L. 1939. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56 (10): 978-982.
  • [17] Kök M., Qader I.N., Mohammed S.S., Öner E., Dağdelen F., Aydogdu Y. 2019. Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Materials Research Express, 7 (1): 015702. doi:10.1088/2053-1591/ab5bef.
  • [18] Mohammed S.S., Kok M., Qader I.N., Kanca M.S., Ercan E., Dağdelen F., Aydoğdu Y. 2020. Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting. Iranian Journal of Science and Technology, Transactions A: Science, 44 (4): 1167-1175.
  • [19] Qader I.N., Ercan E., Faraj B.A.M., Kok M., Dagdelen F., Aydogdu Y. 2020. The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79–Al12–Ni4–Nb5 (wt%) Shape Memory Alloy. Iranian Journal of Science and Technology, Transactions A: Science, 44 (3): 903-910.
  • [20] Qader I.N., Öner E., Kok M., Mohammed S.S., Dağdelen F., Kanca M.S., Aydoğdu Y. 2020. Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science, doi:10.1007/s40995-020-01008-w.
  • [21] Qader I.N., Kok M., Cirak Z.D. 2020. The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys. Journal of Thermal Analysis and Calorimetry, 1-10.
  • [22] Tatar C., Acar R., Qader I.N. 2020. Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. The European Physical Journal Plus, 135 (3): 1-11.
  • [23] Cisse O., Savadogo O., Wu M., Yahia L.H. 2002. Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 61 (3): 339-345.
  • [24] Zhou L., Lv G.-H., Ji C., Yang S.-Z. 2012. Application of plasma polymerized siloxane films for the corrosion protection of titanium alloy. Thin Solid Films, 520 (7): 2505-2509.
  • [25] Pakshir M., Bagheri T., Kazemi M. 2013. In vitro evaluation of the electrochemical behaviour of stainless steel and Ni-Ti orthodontic archwires at different temperatures. The European Journal of Orthodontics, 35 (4): 407-413.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Fethi Dağdelen 0000-0001-9849-590X

Esra Balci 0000-0003-0127-7602

Ercan Ercan 0000-0002-1583-6068

Project Number 119M300
Publication Date September 17, 2021
Submission Date March 29, 2021
Acceptance Date June 2, 2021
Published in Issue Year 2021 Volume: 10 Issue: 3

Cite

IEEE F. Dağdelen, E. Balci, and E. Ercan, “Ti-27Ni-20Nb-3V Alaşımın Faz Dönüşüm Sıcaklıkları, Korozyon Direnci ve Yapısal Özelliklerinin İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 3, pp. 796–802, 2021, doi: 10.17798/bitlisfen.905380.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS