Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 3, 791 - 797, 30.09.2022
https://doi.org/10.17798/bitlisfen.1102823

Abstract

References

  • [1] Maamoun, A.H., Elbestawi, M., Dosbaeva, G.K., Veldhuis, S.C.: Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder. Addit. Manuf. 21, 234–247 (2018). https://doi.org/10.1016/j.addma.2018.03.014
  • [2] Pantělejev, L., Štěpánek, R., Koutný, D., Paloušek, D.: Mechanical properties of AlSi10Mg alloy processed by SLM. Mater. Eng. - Mater. inžinierstvo. 24, 108–114 (2018)
  • [3] Yusuf, S.M., Gao, N.: Influence of energy density on metallurgy and properties in metal additive manufacturing. Mater. Sci. Technol. (United Kingdom). 33, 1269–1289 (2017). https://doi.org/10.1080/02670836.2017.1289444
  • [4] Buchbinder, D., Meiners, W., Wissenbach, K., Poprawe, R.: Selective laser melting of aluminum die-cast alloy—Correlations between process parameters, solidification conditions, and resulting mechanical properties. J. Laser Appl. 27, S29205 (2015). https://doi.org/10.2351/1.4906389
  • [5] Zakay, A., Aghion, E.: Effect of Post-heat Treatment on the Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing. Jom. 71, 1150–1157 (2019). https://doi.org/10.1007/s11837-018-3298-x
  • [6] Palumbo, B., Del Re, F., Martorelli, M., Lanzotti, A., Corrado, P.: Tensile properties characterization of AlSi10Mg parts produced by direct metal laser sintering via nested effects modeling. Materials (Basel). 10, (2017). https://doi.org/10.3390/ma10020144
  • [7] Krishnan, M., Atzeni, E., Canali, R., Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L.: On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS. Rapid Prototyp. J. 20, 449–458 (2014). https://doi.org/10.1108/RPJ-03-2013-0028
  • [8] Trevisan, F., Calignano, F., Lorusso, M., Pakkanen, J., Aversa, A., Ambrosio, E.P., Lombardi, M., Fino, P., Manfredi, D.: On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties. Materials (Basel). 10, (2017). https://doi.org/10.3390/ma10010076
  • [9] Oter, Z.C., Coskun, M., Akca, Y., Surmen, O., Yilmaz, M.S., Ozer, G., Tarakci, G., Khan, H.M., Koc, E.: Support optimization for overhanging parts in direct metal laser sintering. Optik (Stuttg). 181, 575–581 (2019). https://doi.org/10.1016/j.ijleo.2018.12.072
  • [10] Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019
  • [11] Girelli, L., Tocci, M., Gelfi, M., Pola, A.: Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater. Sci. Eng. A. 739, 317–328 (2019). https://doi.org/10.1016/j.msea.2018.10.026
  • [12] Ghasri-Khouzani, M., Peng, H., Attardo, R., Ostiguy, P., Neidig, J., Billo, R., Hoelzle, D., Shankar, M.R.: Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes. J. Manuf. Process. 37, 274–280 (2019). https://doi.org/10.1016/j.jmapro.2018.12.005
  • [13] Girelli, L., Tocci, M., Montesano, L., Gelfi, M., Pola, A.: Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy. IOP Conf. Ser. Mater. Sci. Eng. 264, 0–8 (2017). https://doi.org/10.1088/1757-899X/264/1/012016
  • [14] Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E.P., Atzeni, E.: From powders to dense metal parts: Characterization of a commercial alsimg alloy processed through direct metal laser sintering. Materials (Basel). (2013). https://doi.org/10.3390/ma6030856
  • [15] Kruth, J.P., Mercelis, P., Van Vaerenbergh, J., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11, 26–36 (2005). https://doi.org/10.1108/13552540510573365
  • [16] Simchi, A.: Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng. A. (2006). https://doi.org/10.1016/j.msea.2006.04.117
  • [17] Fox, J.C., Moylan, S.P., Lane, B.M.: Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing. In: Procedia CIRP (2016)
  • [18] Greco, S., Gutzeit, K., Hotz, H., Kirsch, B., Aurich, J.C.: Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05510-8
  • [19] Girelli, L., Giovagnoli, M., Tocci, M., Pola, A., Fortini, A., Merlin, M., La Vecchia, G.M.: Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing. Mater. Sci. Eng. A. 748, 38–51 (2019). https://doi.org/10.1016/j.msea.2019.01.078
  • [20] Wang, D., Yang, Y., Su, X., Chen, Y.: Study on energy input and its influences on single-track,multi-track, and multi-layer in SLM. Int. J. Adv. Manuf. Technol. 58, 1189–1199 (2012). https://doi.org/10.1007/s00170-011-3443-y
  • [21] Karimi, P., Sadeghi, E., Ålgårdh, J., Andersson, J.: EBM-manufactured single tracks of Alloy 718: Influence of energy input and focus offset on geometrical and microstructural characteristics. Mater. Charact. 148, 88–99 (2019). https://doi.org/10.1016/j.matchar.2018.11.033
  • [22] Hrabe, N., Quinn, T.: Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location. Mater. Sci. Eng. A. (2013). https://doi.org/10.1016/j.msea.2013.02.065
  • [23] Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.P.: Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. 22nd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2011. 484–495 (2011)
  • [24] Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1, 77–86 (2014). https://doi.org/10.1016/j.addma.2014.08.001
  • [25] Shahriari, A., Khaksar, L., Nasiri, A., Hadadzadeh, A., Amirkhiz, B.S., Mohammadi, M.: Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel. Electrochim. Acta. 339, 135925 (2020). https://doi.org/10.1016/j.electacta.2020.135925
  • [26] Özer, G., Tarakçi, G., Yilmaz, M.S., Öter, Z.Ç., Sürmen, Ö., Akça, Y., Coşkun, M., Koç, E.: Investigation of the effects of different heat treatment parameters on the corrosion and mechanical properties of the AlSi10Mg alloy produced with direct metal laser sintering. Mater. Corros. (2019). https://doi.org/10.1002/maco.201911171
  • [27] Yılmaz, M.S., Özer, G., Öter, Z.Ç., Ertuğrul, O.: Effects of hot isostatic pressing and heat treatments on structural and corrosion properties of direct metal laser sintered parts. Rapid Prototyp. J. 27, 1059–1067 (2021). https://doi.org/10.1108/RPJ-10-2020-0245

A Determination of the Corrosion and Microstructure Properties of AlSi10Mg Material Produced by Different Direct Metal Laser Sintering (DMLS) Process Parameters

Year 2022, Volume: 11 Issue: 3, 791 - 797, 30.09.2022
https://doi.org/10.17798/bitlisfen.1102823

Abstract

Additive Manufacturing (AM) has been developing with increasing interest in recent years. The development in this technology will accelerate with the increase in material, process, and product quality. It is therefore essential to investigate these shortcomings of additive manufacturing products. In this study, the microstructure and corrosion properties of the material (AlSi10Mg) were investigated by changing the production parameters in the Direct Metal Laser Sintering (DMLS) process. Energy density was considered in parameter selection. The corrosion, topography, and mechanical properties of the DMLS-AlSi10Mg material were investigated in detail, depending on the process parameters. It has been determined that the corrosion resistance and hardness of the material are directly related to the porosity level in the structure.

References

  • [1] Maamoun, A.H., Elbestawi, M., Dosbaeva, G.K., Veldhuis, S.C.: Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder. Addit. Manuf. 21, 234–247 (2018). https://doi.org/10.1016/j.addma.2018.03.014
  • [2] Pantělejev, L., Štěpánek, R., Koutný, D., Paloušek, D.: Mechanical properties of AlSi10Mg alloy processed by SLM. Mater. Eng. - Mater. inžinierstvo. 24, 108–114 (2018)
  • [3] Yusuf, S.M., Gao, N.: Influence of energy density on metallurgy and properties in metal additive manufacturing. Mater. Sci. Technol. (United Kingdom). 33, 1269–1289 (2017). https://doi.org/10.1080/02670836.2017.1289444
  • [4] Buchbinder, D., Meiners, W., Wissenbach, K., Poprawe, R.: Selective laser melting of aluminum die-cast alloy—Correlations between process parameters, solidification conditions, and resulting mechanical properties. J. Laser Appl. 27, S29205 (2015). https://doi.org/10.2351/1.4906389
  • [5] Zakay, A., Aghion, E.: Effect of Post-heat Treatment on the Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing. Jom. 71, 1150–1157 (2019). https://doi.org/10.1007/s11837-018-3298-x
  • [6] Palumbo, B., Del Re, F., Martorelli, M., Lanzotti, A., Corrado, P.: Tensile properties characterization of AlSi10Mg parts produced by direct metal laser sintering via nested effects modeling. Materials (Basel). 10, (2017). https://doi.org/10.3390/ma10020144
  • [7] Krishnan, M., Atzeni, E., Canali, R., Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L.: On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS. Rapid Prototyp. J. 20, 449–458 (2014). https://doi.org/10.1108/RPJ-03-2013-0028
  • [8] Trevisan, F., Calignano, F., Lorusso, M., Pakkanen, J., Aversa, A., Ambrosio, E.P., Lombardi, M., Fino, P., Manfredi, D.: On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties. Materials (Basel). 10, (2017). https://doi.org/10.3390/ma10010076
  • [9] Oter, Z.C., Coskun, M., Akca, Y., Surmen, O., Yilmaz, M.S., Ozer, G., Tarakci, G., Khan, H.M., Koc, E.: Support optimization for overhanging parts in direct metal laser sintering. Optik (Stuttg). 181, 575–581 (2019). https://doi.org/10.1016/j.ijleo.2018.12.072
  • [10] Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019
  • [11] Girelli, L., Tocci, M., Gelfi, M., Pola, A.: Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater. Sci. Eng. A. 739, 317–328 (2019). https://doi.org/10.1016/j.msea.2018.10.026
  • [12] Ghasri-Khouzani, M., Peng, H., Attardo, R., Ostiguy, P., Neidig, J., Billo, R., Hoelzle, D., Shankar, M.R.: Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes. J. Manuf. Process. 37, 274–280 (2019). https://doi.org/10.1016/j.jmapro.2018.12.005
  • [13] Girelli, L., Tocci, M., Montesano, L., Gelfi, M., Pola, A.: Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy. IOP Conf. Ser. Mater. Sci. Eng. 264, 0–8 (2017). https://doi.org/10.1088/1757-899X/264/1/012016
  • [14] Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E.P., Atzeni, E.: From powders to dense metal parts: Characterization of a commercial alsimg alloy processed through direct metal laser sintering. Materials (Basel). (2013). https://doi.org/10.3390/ma6030856
  • [15] Kruth, J.P., Mercelis, P., Van Vaerenbergh, J., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11, 26–36 (2005). https://doi.org/10.1108/13552540510573365
  • [16] Simchi, A.: Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng. A. (2006). https://doi.org/10.1016/j.msea.2006.04.117
  • [17] Fox, J.C., Moylan, S.P., Lane, B.M.: Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing. In: Procedia CIRP (2016)
  • [18] Greco, S., Gutzeit, K., Hotz, H., Kirsch, B., Aurich, J.C.: Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05510-8
  • [19] Girelli, L., Giovagnoli, M., Tocci, M., Pola, A., Fortini, A., Merlin, M., La Vecchia, G.M.: Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing. Mater. Sci. Eng. A. 748, 38–51 (2019). https://doi.org/10.1016/j.msea.2019.01.078
  • [20] Wang, D., Yang, Y., Su, X., Chen, Y.: Study on energy input and its influences on single-track,multi-track, and multi-layer in SLM. Int. J. Adv. Manuf. Technol. 58, 1189–1199 (2012). https://doi.org/10.1007/s00170-011-3443-y
  • [21] Karimi, P., Sadeghi, E., Ålgårdh, J., Andersson, J.: EBM-manufactured single tracks of Alloy 718: Influence of energy input and focus offset on geometrical and microstructural characteristics. Mater. Charact. 148, 88–99 (2019). https://doi.org/10.1016/j.matchar.2018.11.033
  • [22] Hrabe, N., Quinn, T.: Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location. Mater. Sci. Eng. A. (2013). https://doi.org/10.1016/j.msea.2013.02.065
  • [23] Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.P.: Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. 22nd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2011. 484–495 (2011)
  • [24] Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1, 77–86 (2014). https://doi.org/10.1016/j.addma.2014.08.001
  • [25] Shahriari, A., Khaksar, L., Nasiri, A., Hadadzadeh, A., Amirkhiz, B.S., Mohammadi, M.: Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel. Electrochim. Acta. 339, 135925 (2020). https://doi.org/10.1016/j.electacta.2020.135925
  • [26] Özer, G., Tarakçi, G., Yilmaz, M.S., Öter, Z.Ç., Sürmen, Ö., Akça, Y., Coşkun, M., Koç, E.: Investigation of the effects of different heat treatment parameters on the corrosion and mechanical properties of the AlSi10Mg alloy produced with direct metal laser sintering. Mater. Corros. (2019). https://doi.org/10.1002/maco.201911171
  • [27] Yılmaz, M.S., Özer, G., Öter, Z.Ç., Ertuğrul, O.: Effects of hot isostatic pressing and heat treatments on structural and corrosion properties of direct metal laser sintered parts. Rapid Prototyp. J. 27, 1059–1067 (2021). https://doi.org/10.1108/RPJ-10-2020-0245
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Mustafa Safa Yılmaz 0000-0003-2614-9121

Publication Date September 30, 2022
Submission Date April 13, 2022
Acceptance Date September 25, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

IEEE M. S. Yılmaz, “A Determination of the Corrosion and Microstructure Properties of AlSi10Mg Material Produced by Different Direct Metal Laser Sintering (DMLS) Process Parameters”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 3, pp. 791–797, 2022, doi: 10.17798/bitlisfen.1102823.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS