Research Article
BibTex RIS Cite

Lichens as Biomonitors of Air Pollutants Deposition: Strategically Important Element Pollution

Year 2023, Volume: 12 Issue: 2, 485 - 495, 27.06.2023
https://doi.org/10.17798/bitlisfen.1243631

Abstract

Investigation of various species of lichen as biomonitors of air pollutants deposition and evaluation of element pollution were aimed. Maximum accumulation was 43.9±2.1 mg/kg in X. somloensis. Strontium in lichen species was quite high. Percentages of strontium for L.pulmonaria, C.furcata, U.longissima, X.somloensis, and F.caperata were between 58% and 78% indicating the efficient accumulation of strontium. Lichens were also accumulated strategically important elements. Maximum contamination factors in lichens were for strontium and tantalum. Maximum contamination factors of hafnium, niobium, lithium, gallium, and bismuth were for L. pulmonaria while maximum contamination factors of strontium, yttrium, scandium, and cerium were for X.somloensis. Maximum contamination factor of tantalum was for F.caperata. Enrichment factors for L.pulmonaria, C.furcata, and F.caperata were higher than 10, only for bismuth while lower than 10 for U.longissima. Enrichment factors for X.somloensis were higher than 10. Pollution load indexes for L.pulmonaria and U.longissima were higher than 1. Presence of strategically important elements in lichens showed that lichen species can be used as biomonitors of air pollutants.

References

  • [1] Y. Wang and Zhao, J, “Advances in Energy, Environment and Materials Science: Proceedings of the International Conference on Energy, Environment and Materials Science (EEMS 2015)”, Guanghzou, PR China, August 25–26, 2015, CRC Press.
  • [2] N. Maslamani, S. B. Khan, E. Y. Danish, E. M. Bakhsh, S. M. Zakeeruddin, and A. M. Asiri, “Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants”, International Journal of Biological Macromolecules, vol. 167, pp. 101-116, 2021.
  • [3] A. R. Bagheri, N. Aramesh, F. Sher, and M. Bilal, “Covalent organic frameworks as robust materials for mitigation of environmental pollutants”, Chemosphere, vol. 270, 129523, 2021.
  • [4] J. Rockström, W. Steffen, K. Noone, A. Persson, F. S. Chapin III, E. Lambin, and Foley, J, “Planetary boundaries: exploring the safe operating space for humanity”, Ecol. Soc., vol. 14, pp. 32, 2009.
  • [5] E. F. Kean, R. F. Shore, G. Scholey, R. Strachan, and E. A. Chadwick, “Persistent pollutants exceed toxic thresholds in a freshwater top predator decades after legislative control”, Environmental Pollution, vol. 272, 116415, 2021.
  • [6] N. Kircheva and T. Dudev. “Competition between abiogenic and biogenic metal cations in biological systems: Mechanisms of gallium‘s anticancer and antibacterial effect”, Journal of Inorganic Biochemistry, vol. 214, p.111309, 2021.
  • [7] H. Asadian and A. Ahmadi, “The extraction of gallium from chloride solutions by emulsion liquid membrane: Optimization through response surface methodology”, Minerals Engineering, vol. 148, no. .106207, p. 106207, 2020.
  • [8] X. Wen, Q, Bao, L. Guo, and Z. Guo, “The introduction of super-gravity into optimization separation of bismuth and zinc from crude bismuth melt”, Chemical Engineering and Processing - Process Intensification, vol. 160, 108266, 2021.
  • [9] A. Shikika, M. Sethurajan, F. Muvundja, M. C. Mugumaoderha, and St. Gaydardzhiev, “A review on extractive metallurgy of tantalum and niobium”, Hydrometallurgy, vol. 198, 105496, 2020.
  • [10] WEF, 2019, World Economic Forum, A vision for a sustainable battery value chain in 2030. Unlocking the full potential to power sustainable development and climate change mitigation https://www.weforum.org/reports/a-vision-for-a-sustainable-battery-value-chain-in-2030 [11] R. Millot and P. Négrel, “Lithium isotopes in the Loire River Basin (France): Hydrogeochemical characterizations at two complementary scales”, Applied Geochemistry, vol. 125, 104831, 2021.
  • [12] D. A. Yancheshmeh, M. Esmailian, and K. Shirvani, “Microstructural and oxidation behavior of NiCrAl super alloy containing hafnium at high temperature”, International Journal of Hydrogen Energy, vol. 43, pp. 5365-5373, 2018.
  • [13] M. Musgrove, “The occurrence and distribution of strontium in U.S. groundwater”, Applied Geochemistry, vol. 126, 104867, 2021.
  • [14] Y. Yang, T. Liu, L. Bi, and L. Deng, “Recent advances in development of magnetic garnet thin films for applications in spintronics and photonics”, Journal of Alloys and Compounds, vol. 860, 158235, 2021.
  • [15] X. Cheng, Y. Qu, C. Kang, M. Kang, R. Dong, and J. Zhao, Development of new medical Mg-Zn-Ca-Y alloy and in-vitro and in-vivo evaluations of its biological characteristics, Materials Today Communications, vol. 26, 102002, 2021.
  • [16] V. Gonzalez, D. A. L. Vignati, M. N. Pons, E. Montarges-Pelletier, C. Bojic, and L. Giamberini, “Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms”, Environ. Pollut., vol. 199, pp. 139-147, 2015.
  • [17] J. Liu, L. Zeng, S. Liao, X. Liao, J. Liu, J. Mao, Y. Chen, T. Qiu, and S. Ren, “Highly efficient enrichment and adsorption of rare earth ions (yttrium(III)) by recyclable magnetic nitrogen functionalized mesoporous expanded perlite”, Chinese Chemical Letters, vol. 31, pp. 2849-2853, 2021.
  • [18] M. Kurian, “Cerium oxide based materials for water treatment – A review”, Journal of Environmental Chemical Engineering, vol. 8, 104439, 2020.
  • [19] W. F. Zhu, S. Q. Xu, P. Shao, H. Zhang, D. Wu, W. Yang, J. Feng, and L. Feng, “Investigation on liver function among population in high background of rare earth area in South China”, Biological Trace Element Research, vol. 104, pp. 1-8, 2005.
  • [20] Z. M. Migaszewski and A. Gałuszka, “The Characteristics, Occurrence, and Geochemical Behavior of Rare Earth Elements in the Environment: A Review”, Critical Reviews in Environmental Science and Technology, vol. 45, pp. 429-471, 2015.
  • [21] E. M. Peters, M. Svärd, and K. Forsberg, “Phase equilibria of ammonium scandium fluoride phases in aqueous alcohol mixtures for metal recovery by anti-solvent crystallization”, Separation and Purification Technology, vol. 252, 117449, 2020.
  • [22] M. Topal, E. I. Arslan Topal, E. Öbek, and A. Aslan, “Potential human health risks of toxic/harmful elements by consumption of Pseudevernia furfuracea”, International Journal of Environmental Health Research, vol. 32, pp. 1889-1896, 2022.
  • [23] B. Emsen, G. Sadi, A. Bostanci, N. Gursoy, A. Emsen, and A., Aslan, “Evaluation of the biological activities of olivetoric acid, a lichen-derived molecule, in human hepatocellular carcinoma cells” Rend. Fis. Acc. Lincei, vol. 32, pp. 135–148, 2021.
  • [24] E. Sahin, S. Dabagoglu Psav, I. Avan, M. Candan, V. Sahinturk, and A. Tansu Koparal, “Lichen-derived physodic acid exerts cytotoxic and anti-invasive effects in human lung cancer”, Rend. Fis. Acc. Lincei, vol. 32, pp. 511–520, 2021.
  • [25] B. Çolak, D. Cansaran-Duman, G. Guney Eskiler, K. Földes, and S. Yangın, “Usnic acid-induced programmed cell death in ovarian cancer cells”, Rend. Fis. Acc. Lincei, vol. 33, pp. 143–152, 2022.
  • [26] M. Kousehlar and E. Widom, “Identifying the sources of air pollution in an urban-industrial setting by lichen biomonitoring - A multi-tracer approach”, Applied Geochemistry, vol. 121, 104695, 2020.
  • [27] T. Contardo, A. Vannini, K. Sharma, P. Giordani, and S. Loppi, “Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy)”, Chemosphere, vol. 256, 127155, 2020.
  • [28] A. Parviainen, M. Casares-Porcel, C. Marchesi, and C. J. Garrido, “Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain)”, Environmental Pollution, vol. 253, pp. 918-929, 2019.
  • [29] A. Parviainen, E. M. Papaslioti, M. Casares-Porcel, and C. J. Garrido, “Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators”, Environmental Pollution, vol. 263, Part A, 114482, 2020.
  • [30] M. E. Conti, and G. Cecchetti, “Biological monitoring: lichens as bioindicators of air pollution assessmentda review”, Environmental Pollution, vol. 114, pp. 471-492, 2001.
  • [31] G. Brunialti and L. Frati, “Bioaccumulation with lichens: the Italian experience”, Int. J. Environ. Stud., vol. 71, pp. 15-26, 2014.
  • [32] M. E. Hale, “How to Know the Lichens”, Wm. C. Brown Company Publishers, Dubuque, Iowa, p. 246, 1979. [33] Y. Gauslaa, T. Goward,and T. Pypker, “Canopy settings shape elemental composition of the epiphytic lichen Lobaria pulmonaria in unmanaged conifer forests”, Ecological Indicators, vol. 113, 106294, 2020.
  • [34] Y. Koroleva and V. Revunkov, “Air Pollution Monitoring in the South-East Baltic Using the Epiphytic Lichen Hypogymnia physodes”, Atmosphere, vol. 8, pp. 119, 2007.
  • [35] E. Cecconi, G. Incerti, F. Capozzi, P. Adamo, R. Bargagli, R. Benesperi, F. Candotto Carniel, S. E. Favero-Longo, S. Giordano, D. Puntillo, S. Ravera, V. Spagnuolo, and M. Tretiach, “Background element content of the lichen Pseudevernia furfuracea: a supra-national state of art implemented by novel field data from Italy”, Science of the Total Environment, vol. 622, pp. 282–292, 2018.
  • [36] B. Markert, “Establishing of Reference Plant for Inorganic Characterization of Different Plant Species By Chemical Fingerprinting”, Water Air Soil Pollution, vol. 64, pp. 533-538, 1992.
  • [37] H. Salo, M. S. Bu´cko, E. Vaahtovuo, J. Limo, J. Mäkinen, and L. J. Pesonen, “Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens”, J. Geochem. Explor., vol. 115, pp. 69–81, 2012.
  • [38] M. S. Rivera, S. P. Catan, C. D. Fonzo, L. Dopchiz, M. A. Arribere, M. Ansaldo, M. I. Messuti, and D. F. Bubach, “Lichen as biomonitor of atmospheric elemental composition from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica”, Ann Mar Sci., vol. 2, pp. 9-15, 2018.
  • [39] A. Stojanowska J. Rybak M. Bożym, T. Olszowski, and J. S. Bihałowicz, “Spider Webs and Lichens as Bioindicators of Heavy Metals: A Comparison Study in the Vicinity of a Copper Smelter (Poland)”, Sustainability, vol. 12, pp. 8066, 2020.
  • [40] M. Anupama, K. Ashok Kumar, and J. Naveena Lavanya Latha, “Mechanism of strontium uptake and transport in Neurospora crassa”, European Journal of Pharmaceutical and Medical Research, vol. 3, pp. 379-386, 2016.
  • [41] WHO, Strontium and Strontium Compounds, Concise International Chemical Assessment Document 77, pp. 63, 2010.
  • [42] K. K. Divine and P. L. Goering, Tantalum, chap. 21 of  Merian, Ernest, Anke, Manfred, Ihnat, Milan, and Stoeppler, Markus, eds., Elements and their compounds in the environment—Occurrence, analysis and biological relevance (2d ed.): Weinheim, Germany, Wiley-VCH Verlag, GmbH, pp. 1087-1097, 2004..
  • [43] P. L. Goering, and T. L. Ziegler, Niobium (Nb) (columbium), chap. 19 of  Merian, Ernest, Anke, Manfred, Ihnat, Milan, and Stoeppler, Markus, eds., Elements and their compounds in the environment—Occurrence, analysis and biological relevance (2d ed.): Weinheim, Germany, WileyVCH Verlag GmbH, vol. 2, pp. 1039-1046, 2004.
Year 2023, Volume: 12 Issue: 2, 485 - 495, 27.06.2023
https://doi.org/10.17798/bitlisfen.1243631

Abstract

References

  • [1] Y. Wang and Zhao, J, “Advances in Energy, Environment and Materials Science: Proceedings of the International Conference on Energy, Environment and Materials Science (EEMS 2015)”, Guanghzou, PR China, August 25–26, 2015, CRC Press.
  • [2] N. Maslamani, S. B. Khan, E. Y. Danish, E. M. Bakhsh, S. M. Zakeeruddin, and A. M. Asiri, “Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants”, International Journal of Biological Macromolecules, vol. 167, pp. 101-116, 2021.
  • [3] A. R. Bagheri, N. Aramesh, F. Sher, and M. Bilal, “Covalent organic frameworks as robust materials for mitigation of environmental pollutants”, Chemosphere, vol. 270, 129523, 2021.
  • [4] J. Rockström, W. Steffen, K. Noone, A. Persson, F. S. Chapin III, E. Lambin, and Foley, J, “Planetary boundaries: exploring the safe operating space for humanity”, Ecol. Soc., vol. 14, pp. 32, 2009.
  • [5] E. F. Kean, R. F. Shore, G. Scholey, R. Strachan, and E. A. Chadwick, “Persistent pollutants exceed toxic thresholds in a freshwater top predator decades after legislative control”, Environmental Pollution, vol. 272, 116415, 2021.
  • [6] N. Kircheva and T. Dudev. “Competition between abiogenic and biogenic metal cations in biological systems: Mechanisms of gallium‘s anticancer and antibacterial effect”, Journal of Inorganic Biochemistry, vol. 214, p.111309, 2021.
  • [7] H. Asadian and A. Ahmadi, “The extraction of gallium from chloride solutions by emulsion liquid membrane: Optimization through response surface methodology”, Minerals Engineering, vol. 148, no. .106207, p. 106207, 2020.
  • [8] X. Wen, Q, Bao, L. Guo, and Z. Guo, “The introduction of super-gravity into optimization separation of bismuth and zinc from crude bismuth melt”, Chemical Engineering and Processing - Process Intensification, vol. 160, 108266, 2021.
  • [9] A. Shikika, M. Sethurajan, F. Muvundja, M. C. Mugumaoderha, and St. Gaydardzhiev, “A review on extractive metallurgy of tantalum and niobium”, Hydrometallurgy, vol. 198, 105496, 2020.
  • [10] WEF, 2019, World Economic Forum, A vision for a sustainable battery value chain in 2030. Unlocking the full potential to power sustainable development and climate change mitigation https://www.weforum.org/reports/a-vision-for-a-sustainable-battery-value-chain-in-2030 [11] R. Millot and P. Négrel, “Lithium isotopes in the Loire River Basin (France): Hydrogeochemical characterizations at two complementary scales”, Applied Geochemistry, vol. 125, 104831, 2021.
  • [12] D. A. Yancheshmeh, M. Esmailian, and K. Shirvani, “Microstructural and oxidation behavior of NiCrAl super alloy containing hafnium at high temperature”, International Journal of Hydrogen Energy, vol. 43, pp. 5365-5373, 2018.
  • [13] M. Musgrove, “The occurrence and distribution of strontium in U.S. groundwater”, Applied Geochemistry, vol. 126, 104867, 2021.
  • [14] Y. Yang, T. Liu, L. Bi, and L. Deng, “Recent advances in development of magnetic garnet thin films for applications in spintronics and photonics”, Journal of Alloys and Compounds, vol. 860, 158235, 2021.
  • [15] X. Cheng, Y. Qu, C. Kang, M. Kang, R. Dong, and J. Zhao, Development of new medical Mg-Zn-Ca-Y alloy and in-vitro and in-vivo evaluations of its biological characteristics, Materials Today Communications, vol. 26, 102002, 2021.
  • [16] V. Gonzalez, D. A. L. Vignati, M. N. Pons, E. Montarges-Pelletier, C. Bojic, and L. Giamberini, “Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms”, Environ. Pollut., vol. 199, pp. 139-147, 2015.
  • [17] J. Liu, L. Zeng, S. Liao, X. Liao, J. Liu, J. Mao, Y. Chen, T. Qiu, and S. Ren, “Highly efficient enrichment and adsorption of rare earth ions (yttrium(III)) by recyclable magnetic nitrogen functionalized mesoporous expanded perlite”, Chinese Chemical Letters, vol. 31, pp. 2849-2853, 2021.
  • [18] M. Kurian, “Cerium oxide based materials for water treatment – A review”, Journal of Environmental Chemical Engineering, vol. 8, 104439, 2020.
  • [19] W. F. Zhu, S. Q. Xu, P. Shao, H. Zhang, D. Wu, W. Yang, J. Feng, and L. Feng, “Investigation on liver function among population in high background of rare earth area in South China”, Biological Trace Element Research, vol. 104, pp. 1-8, 2005.
  • [20] Z. M. Migaszewski and A. Gałuszka, “The Characteristics, Occurrence, and Geochemical Behavior of Rare Earth Elements in the Environment: A Review”, Critical Reviews in Environmental Science and Technology, vol. 45, pp. 429-471, 2015.
  • [21] E. M. Peters, M. Svärd, and K. Forsberg, “Phase equilibria of ammonium scandium fluoride phases in aqueous alcohol mixtures for metal recovery by anti-solvent crystallization”, Separation and Purification Technology, vol. 252, 117449, 2020.
  • [22] M. Topal, E. I. Arslan Topal, E. Öbek, and A. Aslan, “Potential human health risks of toxic/harmful elements by consumption of Pseudevernia furfuracea”, International Journal of Environmental Health Research, vol. 32, pp. 1889-1896, 2022.
  • [23] B. Emsen, G. Sadi, A. Bostanci, N. Gursoy, A. Emsen, and A., Aslan, “Evaluation of the biological activities of olivetoric acid, a lichen-derived molecule, in human hepatocellular carcinoma cells” Rend. Fis. Acc. Lincei, vol. 32, pp. 135–148, 2021.
  • [24] E. Sahin, S. Dabagoglu Psav, I. Avan, M. Candan, V. Sahinturk, and A. Tansu Koparal, “Lichen-derived physodic acid exerts cytotoxic and anti-invasive effects in human lung cancer”, Rend. Fis. Acc. Lincei, vol. 32, pp. 511–520, 2021.
  • [25] B. Çolak, D. Cansaran-Duman, G. Guney Eskiler, K. Földes, and S. Yangın, “Usnic acid-induced programmed cell death in ovarian cancer cells”, Rend. Fis. Acc. Lincei, vol. 33, pp. 143–152, 2022.
  • [26] M. Kousehlar and E. Widom, “Identifying the sources of air pollution in an urban-industrial setting by lichen biomonitoring - A multi-tracer approach”, Applied Geochemistry, vol. 121, 104695, 2020.
  • [27] T. Contardo, A. Vannini, K. Sharma, P. Giordani, and S. Loppi, “Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy)”, Chemosphere, vol. 256, 127155, 2020.
  • [28] A. Parviainen, M. Casares-Porcel, C. Marchesi, and C. J. Garrido, “Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain)”, Environmental Pollution, vol. 253, pp. 918-929, 2019.
  • [29] A. Parviainen, E. M. Papaslioti, M. Casares-Porcel, and C. J. Garrido, “Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators”, Environmental Pollution, vol. 263, Part A, 114482, 2020.
  • [30] M. E. Conti, and G. Cecchetti, “Biological monitoring: lichens as bioindicators of air pollution assessmentda review”, Environmental Pollution, vol. 114, pp. 471-492, 2001.
  • [31] G. Brunialti and L. Frati, “Bioaccumulation with lichens: the Italian experience”, Int. J. Environ. Stud., vol. 71, pp. 15-26, 2014.
  • [32] M. E. Hale, “How to Know the Lichens”, Wm. C. Brown Company Publishers, Dubuque, Iowa, p. 246, 1979. [33] Y. Gauslaa, T. Goward,and T. Pypker, “Canopy settings shape elemental composition of the epiphytic lichen Lobaria pulmonaria in unmanaged conifer forests”, Ecological Indicators, vol. 113, 106294, 2020.
  • [34] Y. Koroleva and V. Revunkov, “Air Pollution Monitoring in the South-East Baltic Using the Epiphytic Lichen Hypogymnia physodes”, Atmosphere, vol. 8, pp. 119, 2007.
  • [35] E. Cecconi, G. Incerti, F. Capozzi, P. Adamo, R. Bargagli, R. Benesperi, F. Candotto Carniel, S. E. Favero-Longo, S. Giordano, D. Puntillo, S. Ravera, V. Spagnuolo, and M. Tretiach, “Background element content of the lichen Pseudevernia furfuracea: a supra-national state of art implemented by novel field data from Italy”, Science of the Total Environment, vol. 622, pp. 282–292, 2018.
  • [36] B. Markert, “Establishing of Reference Plant for Inorganic Characterization of Different Plant Species By Chemical Fingerprinting”, Water Air Soil Pollution, vol. 64, pp. 533-538, 1992.
  • [37] H. Salo, M. S. Bu´cko, E. Vaahtovuo, J. Limo, J. Mäkinen, and L. J. Pesonen, “Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens”, J. Geochem. Explor., vol. 115, pp. 69–81, 2012.
  • [38] M. S. Rivera, S. P. Catan, C. D. Fonzo, L. Dopchiz, M. A. Arribere, M. Ansaldo, M. I. Messuti, and D. F. Bubach, “Lichen as biomonitor of atmospheric elemental composition from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica”, Ann Mar Sci., vol. 2, pp. 9-15, 2018.
  • [39] A. Stojanowska J. Rybak M. Bożym, T. Olszowski, and J. S. Bihałowicz, “Spider Webs and Lichens as Bioindicators of Heavy Metals: A Comparison Study in the Vicinity of a Copper Smelter (Poland)”, Sustainability, vol. 12, pp. 8066, 2020.
  • [40] M. Anupama, K. Ashok Kumar, and J. Naveena Lavanya Latha, “Mechanism of strontium uptake and transport in Neurospora crassa”, European Journal of Pharmaceutical and Medical Research, vol. 3, pp. 379-386, 2016.
  • [41] WHO, Strontium and Strontium Compounds, Concise International Chemical Assessment Document 77, pp. 63, 2010.
  • [42] K. K. Divine and P. L. Goering, Tantalum, chap. 21 of  Merian, Ernest, Anke, Manfred, Ihnat, Milan, and Stoeppler, Markus, eds., Elements and their compounds in the environment—Occurrence, analysis and biological relevance (2d ed.): Weinheim, Germany, Wiley-VCH Verlag, GmbH, pp. 1087-1097, 2004..
  • [43] P. L. Goering, and T. L. Ziegler, Niobium (Nb) (columbium), chap. 19 of  Merian, Ernest, Anke, Manfred, Ihnat, Milan, and Stoeppler, Markus, eds., Elements and their compounds in the environment—Occurrence, analysis and biological relevance (2d ed.): Weinheim, Germany, WileyVCH Verlag GmbH, vol. 2, pp. 1039-1046, 2004.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Emine Işıl Arslan Topal 0000-0003-0309-7787

Murat Topal 0000-0003-0222-5409

Erdal Öbek 0000-0002-4595-572X

Ali Aslan 0000-0002-5122-6646

Early Pub Date June 27, 2023
Publication Date June 27, 2023
Submission Date January 27, 2023
Acceptance Date April 11, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

IEEE E. I. Arslan Topal, M. Topal, E. Öbek, and A. Aslan, “Lichens as Biomonitors of Air Pollutants Deposition: Strategically Important Element Pollution”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 2, pp. 485–495, 2023, doi: 10.17798/bitlisfen.1243631.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS