Research Article
BibTex RIS Cite
Year 2024, Volume: 13 Issue: 3, 692 - 700, 26.09.2024
https://doi.org/10.17798/bitlisfen.1476462

Abstract

References

  • [1] R. F. Heusler, “Über Magnetische Manganlegierungen,” J. Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 5, p. 219, 1903.
  • [2] G. Joseph Poon, “Chapter 2 Electronic and thermoelectric properties of Half-Heusler alloys,” Semiconductors and Semimetals, vol. 70, pp. 37–75, 2001.
  • [3] S. Berri, D. Maouche, M. Ibrir, B. Bakri, “Electronic structure and magnetic properties of the perovskite cerium manganese oxide from ab initio calculations,” Materials Science in Semiconductor Processing, vol. 26, pp. 199-204, 2014.
  • [4] F. Hosseinzadeh, A. Boochani, S.M. Elahi, Z. Ghorannevis, “GdPtBi Heuslerene: mechanical stability, half-metallic, magneto-optic, and thermoelectric properties by DFT”, Phil. Mag., vol. 102, p. 887–901, 2022.
  • [5] Y. Sokolovskaya, O. Miroshkina, D. Baigutlin, V. Sokolovskiy, M. Zagrebin, V. Buchelnikov, A.T. Zayak, “A ternary map of Ni–Mn–Ga Heusler alloys from ab initio calculations”, J. Met., vol. 11, p. 973, 2021.
  • [6] M. Çanlı, E. Ilhan, N. Arıkan, “First-principles calculations to investigate the structural, electronic, elastic, vibrational and thermodynamic properties of the full Heusler alloys X2ScGa (X= Ir and Rh) ”, J. Mater. Today Commun., vol. 26, p. 101855, 2021.
  • [7] J. Atulasimha, S. Bandyopadhyay, Nanomagnetic and spintronic devices for energy-efficient memory and computing, John Wiley & Sons. 2016.
  • [8] A. Bsiesy, “Spin injection into semiconductors: towards a semiconductor-based spintronic device”, J. Comptes Rendus Physique, vol. 6, pp. 1022–1026, 2005.
  • [9] R.A.P. Ribeiro, A. Camilo, S.R. de Lazaro, “Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO3 (B= Ti, Hf, Zr, Si, Ge, Sn) ”, J. Magnet. Magnet. Mater. Vol. 394 pp. 463–469, 2015.
  • [10] Z. Chen, T. Li, T. Yang, H. Xu, R. Khenata, Y. Gao, X. Wang, “ Palladium (III) fluoride bulk and PdF3/Ga2O3/PdF3 magnetic tunnel junction: multiple spin-gapless semiconducting, perfect spin filtering, and high tunnel magnetoresistance”, J. Nanomater. Vol. 9, p. 1342, 2019.
  • [11] J. M. Al-Issawe, I. Oreibi, “ DFT Calculations of Trilayer Heterostructures from MoSe2, PtS2 Monolayers in Different Orders with Promising Optoelectronic Properties”, J.of the Turkish Chemical Society A, vol. 11, pp. 405-414. 2024.
  • [12] P. Gianozzi, S. Gironcoli, P. Pavone, S. Baroni, “Quantum Espresso: a modular and open-source software project for quantum simulations of materials,” Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, 2009.
  • [13] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H-Y Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H-V Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, “Advanced capabilities for materials modelling with QUANTUM ESPRESSO.” Journal of Physics: Condensed Matter, vol 29, no 46, p. 465901, 2017.
  • [14] L. J. Sham, W. Kohn, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, p. A1133, 1965.
  • [15] P. Gianozzi, P. Pavone, S. Baroni, “Ab initio calculation of phonon dispersions in semiconductors,” Phys. Rev. B, vol. 43, no. 9, pp. 7231–7243, 1991.
  • [16] J.P. Perdew, K Burke., M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996.
  • [17] G. P. Srivastava, The physics of phonons. Bristol.: Adam Hilger, 1990.
  • [17] P. A. Methfessel M., “High-precision sampling for Brillouin- zone integration in metals,” Phys. Rev. B, vol. 40, no. 6, p. 3616, 1989.
  • [19] A. D. Corso, “Elastic constants of beryllium: a first-principles investigation,” J. Phys: Condens Matter, vol. 28, no. 7, p. 075401, 2016.
  • [20] “The Open Quantum Materials Database,” https://oqmd.org/. [Online]. Available: https:// https://oqmd.org/materials/composition/LiRuAs
  • [21] E. Albayrak., “XA yapıdaki Ti2RuSn ters-Heusler alaşımının yapısali elektronik, elastik ve termodinamik özelliklerinin teorik olarak incelenmesi,” Journal of the Institute of Science and Technology, vol. 12, no. 3, pp. 1496–1505, 2022.
  • [22] K. Huang, M. Born, Dynamical Teory of Crystal Lattices. Oxford, England: Clarendon Press, 1965.
  • [23] S. Al, N. Arikan, S. Demir and A. İyigor, “LatticeDynamic Properties of Rh2XAl (X= Fe and Y) Alloys,” Physica B: Condensed Matter, vol. 531, pp. 16–20, 2018.
  • [24] V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, “Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3,” Physica status solidi (RRL) – Rapid Res. Lett., vol. 1, no. 3, pp. 89–91, 2007
  • [25] S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954.
  • [26] R. Gaillac, P. Pullumbi, FX Coudert, “ELATE: an open-source online application for analysis and visualization of elastic tensors,” J. Phys.:Condens. Matter, vol. 28, no. 27, p. 275201, 2016.
  • [27] P. Petit, “Recherches sur quelques points importants de la Théorie de la Chaleur,” Annales de Chimie et de Physique, vol. 10395, p. 413, 1819.

Theoretical Investigation of The Properties of LiRuAs Semi-Heusler Alloy via Density Function Theory

Year 2024, Volume: 13 Issue: 3, 692 - 700, 26.09.2024
https://doi.org/10.17798/bitlisfen.1476462

Abstract

The structural, thermal, electronic and elastic properties of LiRuAS semi Heusler alloy were investigated using a generalized gradient approximation (GGA) approach, which employs a density functional theory (DFT) to examine the alloy's optimized equilibrium lattice parameter. The optimized lattice parameter was found to be 5.601 Å. The results of the calculations indicate that the alloy exhibits mechanical stability, flexibility, non-magnetic conductivity, malleability, compressibility, and anisotropy.

References

  • [1] R. F. Heusler, “Über Magnetische Manganlegierungen,” J. Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 5, p. 219, 1903.
  • [2] G. Joseph Poon, “Chapter 2 Electronic and thermoelectric properties of Half-Heusler alloys,” Semiconductors and Semimetals, vol. 70, pp. 37–75, 2001.
  • [3] S. Berri, D. Maouche, M. Ibrir, B. Bakri, “Electronic structure and magnetic properties of the perovskite cerium manganese oxide from ab initio calculations,” Materials Science in Semiconductor Processing, vol. 26, pp. 199-204, 2014.
  • [4] F. Hosseinzadeh, A. Boochani, S.M. Elahi, Z. Ghorannevis, “GdPtBi Heuslerene: mechanical stability, half-metallic, magneto-optic, and thermoelectric properties by DFT”, Phil. Mag., vol. 102, p. 887–901, 2022.
  • [5] Y. Sokolovskaya, O. Miroshkina, D. Baigutlin, V. Sokolovskiy, M. Zagrebin, V. Buchelnikov, A.T. Zayak, “A ternary map of Ni–Mn–Ga Heusler alloys from ab initio calculations”, J. Met., vol. 11, p. 973, 2021.
  • [6] M. Çanlı, E. Ilhan, N. Arıkan, “First-principles calculations to investigate the structural, electronic, elastic, vibrational and thermodynamic properties of the full Heusler alloys X2ScGa (X= Ir and Rh) ”, J. Mater. Today Commun., vol. 26, p. 101855, 2021.
  • [7] J. Atulasimha, S. Bandyopadhyay, Nanomagnetic and spintronic devices for energy-efficient memory and computing, John Wiley & Sons. 2016.
  • [8] A. Bsiesy, “Spin injection into semiconductors: towards a semiconductor-based spintronic device”, J. Comptes Rendus Physique, vol. 6, pp. 1022–1026, 2005.
  • [9] R.A.P. Ribeiro, A. Camilo, S.R. de Lazaro, “Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO3 (B= Ti, Hf, Zr, Si, Ge, Sn) ”, J. Magnet. Magnet. Mater. Vol. 394 pp. 463–469, 2015.
  • [10] Z. Chen, T. Li, T. Yang, H. Xu, R. Khenata, Y. Gao, X. Wang, “ Palladium (III) fluoride bulk and PdF3/Ga2O3/PdF3 magnetic tunnel junction: multiple spin-gapless semiconducting, perfect spin filtering, and high tunnel magnetoresistance”, J. Nanomater. Vol. 9, p. 1342, 2019.
  • [11] J. M. Al-Issawe, I. Oreibi, “ DFT Calculations of Trilayer Heterostructures from MoSe2, PtS2 Monolayers in Different Orders with Promising Optoelectronic Properties”, J.of the Turkish Chemical Society A, vol. 11, pp. 405-414. 2024.
  • [12] P. Gianozzi, S. Gironcoli, P. Pavone, S. Baroni, “Quantum Espresso: a modular and open-source software project for quantum simulations of materials,” Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, 2009.
  • [13] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H-Y Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H-V Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, “Advanced capabilities for materials modelling with QUANTUM ESPRESSO.” Journal of Physics: Condensed Matter, vol 29, no 46, p. 465901, 2017.
  • [14] L. J. Sham, W. Kohn, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, p. A1133, 1965.
  • [15] P. Gianozzi, P. Pavone, S. Baroni, “Ab initio calculation of phonon dispersions in semiconductors,” Phys. Rev. B, vol. 43, no. 9, pp. 7231–7243, 1991.
  • [16] J.P. Perdew, K Burke., M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996.
  • [17] G. P. Srivastava, The physics of phonons. Bristol.: Adam Hilger, 1990.
  • [17] P. A. Methfessel M., “High-precision sampling for Brillouin- zone integration in metals,” Phys. Rev. B, vol. 40, no. 6, p. 3616, 1989.
  • [19] A. D. Corso, “Elastic constants of beryllium: a first-principles investigation,” J. Phys: Condens Matter, vol. 28, no. 7, p. 075401, 2016.
  • [20] “The Open Quantum Materials Database,” https://oqmd.org/. [Online]. Available: https:// https://oqmd.org/materials/composition/LiRuAs
  • [21] E. Albayrak., “XA yapıdaki Ti2RuSn ters-Heusler alaşımının yapısali elektronik, elastik ve termodinamik özelliklerinin teorik olarak incelenmesi,” Journal of the Institute of Science and Technology, vol. 12, no. 3, pp. 1496–1505, 2022.
  • [22] K. Huang, M. Born, Dynamical Teory of Crystal Lattices. Oxford, England: Clarendon Press, 1965.
  • [23] S. Al, N. Arikan, S. Demir and A. İyigor, “LatticeDynamic Properties of Rh2XAl (X= Fe and Y) Alloys,” Physica B: Condensed Matter, vol. 531, pp. 16–20, 2018.
  • [24] V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, “Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3,” Physica status solidi (RRL) – Rapid Res. Lett., vol. 1, no. 3, pp. 89–91, 2007
  • [25] S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954.
  • [26] R. Gaillac, P. Pullumbi, FX Coudert, “ELATE: an open-source online application for analysis and visualization of elastic tensors,” J. Phys.:Condens. Matter, vol. 28, no. 27, p. 275201, 2016.
  • [27] P. Petit, “Recherches sur quelques points importants de la Théorie de la Chaleur,” Annales de Chimie et de Physique, vol. 10395, p. 413, 1819.
There are 27 citations in total.

Details

Primary Language English
Subjects Material Physics, Structural Properties of Condensed Matter, Computational Material Sciences
Journal Section Araştırma Makalesi
Authors

Erol Albayrak 0000-0001-9161-9068

Early Pub Date September 20, 2024
Publication Date September 26, 2024
Submission Date May 1, 2024
Acceptance Date July 2, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

IEEE E. Albayrak, “Theoretical Investigation of The Properties of LiRuAs Semi-Heusler Alloy via Density Function Theory”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 3, pp. 692–700, 2024, doi: 10.17798/bitlisfen.1476462.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS