Research Article
BibTex RIS Cite
Year 2024, Volume: 13 Issue: 3, 772 - 778, 26.09.2024
https://doi.org/10.17798/bitlisfen.1487981

Abstract

References

  • [1] A. E. Çerçevik, Y. C. Toklu, S. Y. Kandemir, and M. Özgür, ‘3B Beton Üretimi İçin Mermer Tozu Ve Seramik Artıklarının Kullanılmasının Araştırılması’, vol. 10, no. 2, 2018.
  • [2] C. Llatas, ‘A model for quantifying construction waste in projects according to the European waste list’, Waste Management, vol. 31, no. 6, pp. 1261–1276, Jun. 2011, doi: 10.1016/j.wasman.2011.01.023.
  • [3] A. Ercan, ‘Türkiye’de Yapı Sektöründe İşçi Sağlığı ve Güvenliğinin Değerlendirilmesi,’ Politeknik Dergisi, vol. 13, no. 1, pp. 49-53, 2010.
  • [4] B. Nematollahi, M. Xia, and J. Sanjayan, ‘Current Progress of 3D Concrete Printing Technologies’, presented at the 34th International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, Jul. 2017. doi: 10.22260/ISARC2017/0035.
  • [5] S. Etli̇, ‘Evaluatıon Of Curing Time For Micro Concrete Mixes Containing Silica Fume, Nano-Silica and Fly Ash’, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 21, no. 42, pp. 304–316, Dec. 2022, doi: 10.55071/ticaretfbd.1093891.
  • [6] S. Etli̇, ‘Investigation of the Effect of Glass Sand Used in SCC on the Behavior of the SCC Stress- Strain Relationship’, International Journal of Innovative Engineering Applications, vol. 6, no. 2, pp. 237–244, Dec. 2022, doi: 10.46460/ijiea.1108476.
  • [7] S. Lakusic, Ed., ‘Effect of glass sand used as aggregate on micro-concrete properties’, JCE, vol. 75, no. 01, pp. 39–51, Feb. 2023, doi: 10.14256/JCE.3538.2022.
  • [8] S. Etli, ‘Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate’, Journal of Cleaner Production, vol. 384, p. 135590, Jan. 2023, doi: 10.1016/j.jclepro.2022.135590.
  • [9] ‘Effect of Partial Inclusion of Tiles and Brick Waste as Binders in SCM Elements on Fresh State and Early Age Mechanical Properties’, in International Conference on Innovative Academic Studies, All Sciences Academy, 2023. doi: 10.59287/icias.1616.
  • [10] S. Etli̇ and S. Cemalgi̇L, ‘Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete’, International Journal of Pure and Applied Sciences, vol. 6, no. 2, pp. 118–129, Dec. 2020, doi: 10.29132/ijpas.789480.
  • [11] O. Hansu and S. Etli̇, ‘Beton ile Üretilen Suda Yüzebilen Kano Tasarımı Üzerine Bir Araştırma’, European Journal of Science and Technology, Jan. 2022, doi: 10.31590/ejosat.1052105.
  • [12] S. Etli, T. Yılmaz, and O. Hansu, ‘Effect of White-Portland cement containing micro and nano silica on the mechanical and freeze-thaw properties of self compacting mortars’, Engineering Science and Technology, an International Journal, vol. 50, p. 101614, Feb. 2024, doi: 10.1016/j.jestch.2023.101614.
  • [13] M. Akgül, O. Dogan, and S. Etli̇, ‘Investigation of Mechanical Properties of Granulated Waste Rubber Aggregates Substituted Self-Compacting Concrete Mortar Produced with Different Cement’, Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 12, no. 2, pp. 787–798, Jun. 2020, doi: 10.29137/umagd.734614.
  • [14] S. Etli, S. Cemalgil, and O. Onat, ‘Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate’, International Journal of Pure and Applied Sciences, vol. 4, no. 1, pp. 10–22, Jul. 2018, doi: 10.29132/ijpas.341413.
  • [15] S. Cemalgil, S. Etli, and O. Onat, ‘Curing effect on mortar properties produced with styrene-butadiene rubber’, Computers and Concrete, vol. 21, no. 6, pp. 705–715, Jun. 2018, doi: 10.12989/CAC.2018.21.6.705.
  • [16] S. Cemalgil, O. Onat, M. K. Tanaydın, and S. Etli, ‘Effect of waste textile dye adsorbed almond shell on self compacting mortar’, Construction and Building Materials, vol. 300, p. 123978, Sep. 2021, doi: 10.1016/j.conbuildmat.2021.123978.
  • [17] S. Etli, S. Cemalgil, and O. Onat, ‘Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar’, Computers and Concrete, vol. 27, no. 3, pp. 241–252, Mar. 2021, doi: 10.12989/CAC.2021.27.3.241.
  • [18] M. Gesoglu, E. Güneyisi, O. Hansu, S. Etli, and M. Alhassan, ‘Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder’, Construction and Building Materials, vol. 140, pp. 562–569, Jun. 2017, doi: 10.1016/j.conbuildmat.2017.02.139.
  • [19] M. Akgül and S. Etli, ‘Investigation of the variation of mechanical and durability properties of elements manufactured with rubber substituted SCMs with element height’, Construction and Building Materials, vol. 428, p. 136300, May 2024, doi: 10.1016/j.conbuildmat.2024.136300.
  • [20] B. Khoshnevis, ‘Automated construction by contour crafting—related robotics and information technologies’, Automation in Construction, vol. 13, no. 1, pp. 5–19, Jan. 2004, doi: 10.1016/j.autcon.2003.08.012.
  • [21] S. Lim, R. A. Buswell, T. T. Le, S. A. Austin, A. G. F. Gibb, and T. Thorpe, ‘Developments in construction-scale additive manufacturing processes’, Automation in Construction, vol. 21, pp. 262–268, Jan. 2012, doi: 10.1016/j.autcon.2011.06.010.
  • [22] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, ‘Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing’, Virtual and Physical Prototyping, vol. 11, no. 3, pp. 209–225, Jul. 2016, doi: 10.1080/17452759.2016.1209867.
  • [23] C. Gosselin, R. Duballet, Ph. Roux, N. Gaudillière, J. Dirrenberger, and Ph. Morel, ‘Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders’, Materials & Design, vol. 100, pp. 102–109, Jun. 2016, doi: 10.1016/j.matdes.2016.03.097.
  • [24] D. Asprone, F. Auricchio, C. Menna, and V. Mercuri, ‘3D printing of reinforced concrete elements: Technology and design approach’, Construction and Building Materials, vol. 165, pp. 218–231, Mar. 2018, doi: 10.1016/j.conbuildmat.2018.01.018.
  • [25] L. Wang, H. Jiang, Z. Li, and G. Ma, ‘Mechanical behaviors of 3D printed lightweight concrete structure with hollow section’, Archiv.Civ.Mech.Eng, vol. 20, no. 1, p. 16, Mar. 2020, doi: 10.1007/s43452-020-00017-1.
  • [26] D. Dey, V. N. Van, H. N. Xuan, D. Srinivas, B. Panda, and P. Tran, ‘Flexural performance of 3D printed concrete structure with lattice infills’, Developments in the Built Environment, vol. 16, p. 100297, Dec. 2023, doi: 10.1016/j.dibe.2023.100297.
  • [27] S. Ahmed and S. Yehia, ‘Evaluation of Workability and Structuration Rate of Locally Developed 3D Printing Concrete Using Conventional Methods’, Materials, vol. 15, no. 3, p. 1243, Feb. 2022, doi: 10.3390/ma15031243.
  • [28] B. Panda and M. J. Tan, ‘Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing’, Ceramics International, vol. 44, no. 9, pp. 10258–10265, Jun. 2018, doi: 10.1016/j.ceramint.2018.03.031.
  • [29] F. Özalp, H. D. Yılmaz, and Ş. Yaşar, ‘3D Yazıcı Teknolojisine Uygun Sürdürülebilir Ve Yenilikçi Betonların Geliştirilmesi’.
  • [30] ‘Standard Test Method for Slump of Hydraulic-Cement Concrete’. Accessed: Jul. 18, 2024. [Online]. Available: https://www.astm.org/c0143_c0143m-12.html
  • [31] ‘Standard Test Method for Flow of Hydraulic Cement Mortar’. Accessed: Jul. 18, 2024. [Online]. Available: https://www.astm.org/c1437-20.html
  • [32] Y. W. D. Tay, Y. Qian, and M. J. Tan, ‘Printability region for 3D concrete printing using slump and slump flow test’, Composites Part B: Engineering, vol. 174, p. 106968, Oct. 2019, doi: 10.1016/j.compositesb.2019.106968.
  • [33] T. T. Le, S. A. Austin, S. Lim, R. A. Buswell, A. G. F. Gibb, and T. Thorpe, ‘Mix design and fresh properties for high-performance printing concrete’, Mater Struct, vol. 45, no. 8, pp. 1221–1232, Aug. 2012, doi: 10.1617/s11527-012-9828-z.
  • [34] Y. Zhang, Y. Zhang, G. Liu, Y. Yang, M. Wu, and B. Pang, ‘Fresh properties of a novel 3D printing concrete ink’, Construction and Building Materials, vol. 174, pp. 263–271, Jun. 2018, doi: 10.1016/j.conbuildmat.2018.04.115.
  • [35] S. A. Austin, ‘Low-volume wet-process sprayed concrete: pumping and spraying’, Mater. Struct., vol. 38, no. 276, pp. 229–237, Jan. 2005, doi: 10.1617/14025.
  • [36] ‘Master Builders Solutions | MasterGlenium 51’, Türkiye. Accessed: Apr. 14, 2024. [Online]. Available: https://mbcc.sika.com/tr-tr/products/masterglenium/masterglenium-51

Printable Hollow Concrete Beams by 3D Concrete Printer

Year 2024, Volume: 13 Issue: 3, 772 - 778, 26.09.2024
https://doi.org/10.17798/bitlisfen.1487981

Abstract

3D printers are constantly developing and have a wide range of uses. Today, it is actively used in many fields, from the production of implants and prostheses to the production of jewelry. This technology, which is widely used in civil engineering in areas such as building element production, sustainability, and building construction offers several advantages over conventional concrete pouring and processing methods. Decreasing material waste, decreasing labor costs, freedom and originality in design, and saving time are among these advantages. In this context, 3DCP compared to traditional methods, it reduces the use of materials and makes the construction process more efficient since it is designed with different internal patterns and spaces. This study focuses on the printing process of hollow concrete beam designs in 3 different patterns with 2 different mixtures. Crushing between the layers of beams printed with 3D concrete printing, layer height, and printability and fresh state tests of the mixtures were examined.

References

  • [1] A. E. Çerçevik, Y. C. Toklu, S. Y. Kandemir, and M. Özgür, ‘3B Beton Üretimi İçin Mermer Tozu Ve Seramik Artıklarının Kullanılmasının Araştırılması’, vol. 10, no. 2, 2018.
  • [2] C. Llatas, ‘A model for quantifying construction waste in projects according to the European waste list’, Waste Management, vol. 31, no. 6, pp. 1261–1276, Jun. 2011, doi: 10.1016/j.wasman.2011.01.023.
  • [3] A. Ercan, ‘Türkiye’de Yapı Sektöründe İşçi Sağlığı ve Güvenliğinin Değerlendirilmesi,’ Politeknik Dergisi, vol. 13, no. 1, pp. 49-53, 2010.
  • [4] B. Nematollahi, M. Xia, and J. Sanjayan, ‘Current Progress of 3D Concrete Printing Technologies’, presented at the 34th International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, Jul. 2017. doi: 10.22260/ISARC2017/0035.
  • [5] S. Etli̇, ‘Evaluatıon Of Curing Time For Micro Concrete Mixes Containing Silica Fume, Nano-Silica and Fly Ash’, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, vol. 21, no. 42, pp. 304–316, Dec. 2022, doi: 10.55071/ticaretfbd.1093891.
  • [6] S. Etli̇, ‘Investigation of the Effect of Glass Sand Used in SCC on the Behavior of the SCC Stress- Strain Relationship’, International Journal of Innovative Engineering Applications, vol. 6, no. 2, pp. 237–244, Dec. 2022, doi: 10.46460/ijiea.1108476.
  • [7] S. Lakusic, Ed., ‘Effect of glass sand used as aggregate on micro-concrete properties’, JCE, vol. 75, no. 01, pp. 39–51, Feb. 2023, doi: 10.14256/JCE.3538.2022.
  • [8] S. Etli, ‘Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate’, Journal of Cleaner Production, vol. 384, p. 135590, Jan. 2023, doi: 10.1016/j.jclepro.2022.135590.
  • [9] ‘Effect of Partial Inclusion of Tiles and Brick Waste as Binders in SCM Elements on Fresh State and Early Age Mechanical Properties’, in International Conference on Innovative Academic Studies, All Sciences Academy, 2023. doi: 10.59287/icias.1616.
  • [10] S. Etli̇ and S. Cemalgi̇L, ‘Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete’, International Journal of Pure and Applied Sciences, vol. 6, no. 2, pp. 118–129, Dec. 2020, doi: 10.29132/ijpas.789480.
  • [11] O. Hansu and S. Etli̇, ‘Beton ile Üretilen Suda Yüzebilen Kano Tasarımı Üzerine Bir Araştırma’, European Journal of Science and Technology, Jan. 2022, doi: 10.31590/ejosat.1052105.
  • [12] S. Etli, T. Yılmaz, and O. Hansu, ‘Effect of White-Portland cement containing micro and nano silica on the mechanical and freeze-thaw properties of self compacting mortars’, Engineering Science and Technology, an International Journal, vol. 50, p. 101614, Feb. 2024, doi: 10.1016/j.jestch.2023.101614.
  • [13] M. Akgül, O. Dogan, and S. Etli̇, ‘Investigation of Mechanical Properties of Granulated Waste Rubber Aggregates Substituted Self-Compacting Concrete Mortar Produced with Different Cement’, Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 12, no. 2, pp. 787–798, Jun. 2020, doi: 10.29137/umagd.734614.
  • [14] S. Etli, S. Cemalgil, and O. Onat, ‘Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate’, International Journal of Pure and Applied Sciences, vol. 4, no. 1, pp. 10–22, Jul. 2018, doi: 10.29132/ijpas.341413.
  • [15] S. Cemalgil, S. Etli, and O. Onat, ‘Curing effect on mortar properties produced with styrene-butadiene rubber’, Computers and Concrete, vol. 21, no. 6, pp. 705–715, Jun. 2018, doi: 10.12989/CAC.2018.21.6.705.
  • [16] S. Cemalgil, O. Onat, M. K. Tanaydın, and S. Etli, ‘Effect of waste textile dye adsorbed almond shell on self compacting mortar’, Construction and Building Materials, vol. 300, p. 123978, Sep. 2021, doi: 10.1016/j.conbuildmat.2021.123978.
  • [17] S. Etli, S. Cemalgil, and O. Onat, ‘Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar’, Computers and Concrete, vol. 27, no. 3, pp. 241–252, Mar. 2021, doi: 10.12989/CAC.2021.27.3.241.
  • [18] M. Gesoglu, E. Güneyisi, O. Hansu, S. Etli, and M. Alhassan, ‘Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder’, Construction and Building Materials, vol. 140, pp. 562–569, Jun. 2017, doi: 10.1016/j.conbuildmat.2017.02.139.
  • [19] M. Akgül and S. Etli, ‘Investigation of the variation of mechanical and durability properties of elements manufactured with rubber substituted SCMs with element height’, Construction and Building Materials, vol. 428, p. 136300, May 2024, doi: 10.1016/j.conbuildmat.2024.136300.
  • [20] B. Khoshnevis, ‘Automated construction by contour crafting—related robotics and information technologies’, Automation in Construction, vol. 13, no. 1, pp. 5–19, Jan. 2004, doi: 10.1016/j.autcon.2003.08.012.
  • [21] S. Lim, R. A. Buswell, T. T. Le, S. A. Austin, A. G. F. Gibb, and T. Thorpe, ‘Developments in construction-scale additive manufacturing processes’, Automation in Construction, vol. 21, pp. 262–268, Jan. 2012, doi: 10.1016/j.autcon.2011.06.010.
  • [22] F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, ‘Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing’, Virtual and Physical Prototyping, vol. 11, no. 3, pp. 209–225, Jul. 2016, doi: 10.1080/17452759.2016.1209867.
  • [23] C. Gosselin, R. Duballet, Ph. Roux, N. Gaudillière, J. Dirrenberger, and Ph. Morel, ‘Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders’, Materials & Design, vol. 100, pp. 102–109, Jun. 2016, doi: 10.1016/j.matdes.2016.03.097.
  • [24] D. Asprone, F. Auricchio, C. Menna, and V. Mercuri, ‘3D printing of reinforced concrete elements: Technology and design approach’, Construction and Building Materials, vol. 165, pp. 218–231, Mar. 2018, doi: 10.1016/j.conbuildmat.2018.01.018.
  • [25] L. Wang, H. Jiang, Z. Li, and G. Ma, ‘Mechanical behaviors of 3D printed lightweight concrete structure with hollow section’, Archiv.Civ.Mech.Eng, vol. 20, no. 1, p. 16, Mar. 2020, doi: 10.1007/s43452-020-00017-1.
  • [26] D. Dey, V. N. Van, H. N. Xuan, D. Srinivas, B. Panda, and P. Tran, ‘Flexural performance of 3D printed concrete structure with lattice infills’, Developments in the Built Environment, vol. 16, p. 100297, Dec. 2023, doi: 10.1016/j.dibe.2023.100297.
  • [27] S. Ahmed and S. Yehia, ‘Evaluation of Workability and Structuration Rate of Locally Developed 3D Printing Concrete Using Conventional Methods’, Materials, vol. 15, no. 3, p. 1243, Feb. 2022, doi: 10.3390/ma15031243.
  • [28] B. Panda and M. J. Tan, ‘Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing’, Ceramics International, vol. 44, no. 9, pp. 10258–10265, Jun. 2018, doi: 10.1016/j.ceramint.2018.03.031.
  • [29] F. Özalp, H. D. Yılmaz, and Ş. Yaşar, ‘3D Yazıcı Teknolojisine Uygun Sürdürülebilir Ve Yenilikçi Betonların Geliştirilmesi’.
  • [30] ‘Standard Test Method for Slump of Hydraulic-Cement Concrete’. Accessed: Jul. 18, 2024. [Online]. Available: https://www.astm.org/c0143_c0143m-12.html
  • [31] ‘Standard Test Method for Flow of Hydraulic Cement Mortar’. Accessed: Jul. 18, 2024. [Online]. Available: https://www.astm.org/c1437-20.html
  • [32] Y. W. D. Tay, Y. Qian, and M. J. Tan, ‘Printability region for 3D concrete printing using slump and slump flow test’, Composites Part B: Engineering, vol. 174, p. 106968, Oct. 2019, doi: 10.1016/j.compositesb.2019.106968.
  • [33] T. T. Le, S. A. Austin, S. Lim, R. A. Buswell, A. G. F. Gibb, and T. Thorpe, ‘Mix design and fresh properties for high-performance printing concrete’, Mater Struct, vol. 45, no. 8, pp. 1221–1232, Aug. 2012, doi: 10.1617/s11527-012-9828-z.
  • [34] Y. Zhang, Y. Zhang, G. Liu, Y. Yang, M. Wu, and B. Pang, ‘Fresh properties of a novel 3D printing concrete ink’, Construction and Building Materials, vol. 174, pp. 263–271, Jun. 2018, doi: 10.1016/j.conbuildmat.2018.04.115.
  • [35] S. A. Austin, ‘Low-volume wet-process sprayed concrete: pumping and spraying’, Mater. Struct., vol. 38, no. 276, pp. 229–237, Jan. 2005, doi: 10.1617/14025.
  • [36] ‘Master Builders Solutions | MasterGlenium 51’, Türkiye. Accessed: Apr. 14, 2024. [Online]. Available: https://mbcc.sika.com/tr-tr/products/masterglenium/masterglenium-51
There are 36 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Araştırma Makalesi
Authors

Osman Hansu 0000-0003-1638-4304

Furkan Boran Akkoyun 0000-0002-9932-937X

Nildem Tayşi 0000-0003-0947-5662

Early Pub Date September 20, 2024
Publication Date September 26, 2024
Submission Date May 22, 2024
Acceptance Date August 15, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

IEEE O. Hansu, F. B. Akkoyun, and N. Tayşi, “Printable Hollow Concrete Beams by 3D Concrete Printer”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 3, pp. 772–778, 2024, doi: 10.17798/bitlisfen.1487981.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS