Year 2025,
Volume: 14 Issue: 2, 1131 - 1150, 30.06.2025
Ahmad Kakhia
,
Esra Eylem Karataş
References
-
X. Li, S. Zhou, S. Li, M. Zhang, and J. Sun, “Quick construction method of prefabricated structure,” unpublished, Jul. 19, 2019.
-
Y. Nan, Z. Wu, J. Xiang, and H. Li, “Research progress of long span steel structures,” Academic Journal of Science and Technology, vol. 11, no. 3, pp. 92–96, Jul. 2024, doi: 10.54097/zntta794.
-
I. N. Luzenina and L. Sosnovskikh, “Steel space frame structures of long-span buildings,” AIP Conference Proceedings, Jan. 2022, doi: 10.1063/5.0107369.
-
M. Gagné, B. Duran, and M. V. van Leeuwen, “Economical steel bridges,” IABSE Congress, Jan. 2022, doi: 10.2749/prague.2022.0136.
-
C. Wang and Z. Wu, “Steel structure for construction,” unpublished, Aug. 21, 2013.
-
M. R. M. Zain, N. A. Yahya, L. S. Wee, O. C. Lian, and B. Yunus, “Experimental study on the bearing capacity of concrete blocks loaded through square and circular steel plates,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 513, no. 1, p. 012032, Apr. 2019, doi: 10.1088/1757-899X/513/1/012032.
-
A. J. DeLuzio, Lateral Torsional Buckling, Morgan & Claypool Publishers, 2023, pp. 81–84, doi: 10.1007/978-3-031-40508-2_5.
-
H. R. Kochar and S. K. Kulkarni, “Lateral-torsional buckling of steel beam,” Jan. 2012. [Online]. Available: http://www.ijceronline.com/papers/Vol2_issue6/AG02601780181.pdf
-
C. H. Yoo and S. C. Lee, “Lateral-torsional buckling,” in Stability of Structures, 2011, pp. 327–371, doi: 10.1016/B978-0-12-385122-2.10007-7.
-
A. Kudzys, O. Lukoševičienė, and I. Baltrukėnaitė-Kroškienė, “Structural safety of rolled and welded beams subjected to lateral‐torsional buckling,” J. Civ. Eng. Manag., vol. 16, no. 2, pp. 172–178, Jun. 2010, doi: 10.3846/JCEM.2010.18.
-
T. Yilmaz, N. Kirac, and Ö. Anil, “An alternative evaluation of the LTB behavior of mono-symmetric beam-columns,” Steel Compos. Struct., vol. 30, no. 5, pp. 471–481, Jan. 2019, doi: 10.12989/SCS.2019.30.5.471.
-
J. Nseir et al., “Lateral torsional buckling of cellular steel beams,” Apr. 2012. [Online]. Available: https://biblio.ugent.be/publication/2130334
-
Y. Z. Liu et al., “A novel straight beam element for lateral-distortional deformation analysis of frames and curved beams made of monosymmetric I-sections,” Int. J. Struct. Stab. Dyn., Jan. 2024, doi: 10.1142/s021945542471007x.
-
R. Piotrowski and A. Szychowski, “Lateral torsional buckling of steel beams elastically restrained at the support nodes,” Appl. Sci., vol. 9, no. 9, p. 1944, May 2019, doi: 10.3390/APP9091944.
-
Y. Huang, L. Zhang, Z. Zuo, X. Pan, and X. Du, “Lateral supporting device of integral steel platform and using method,” unpublished, Apr. 02, 2021.
-
A. Kaveh and F. Shokohi, “Optimum design of laterally supported castellated beams using tug of war optimization algorithm,” Struct. Eng. Mech., vol. 58, no. 3, pp. 533–553, 2016.
-
F. Erdal, “The comparative analysis of optimal designed web expanded beams via improved harmony search method,” Struct. Eng. Mech., vol. 54, no. 4, pp. 665–691, 2015.
-
N. A. Mezher, A. R. Noori, and D. Ertürkmen, “Influence of the web opening shapes on the bending and free vibration responses of castellated steel beams,” Int. J. Eng. Technol., vol. 8, no. 2, pp. 83–93, 2023.
-
M. Karalar and M. Dicleli, “Experimental and numerical studies on the proposed stiffener detailing of integral bridge steel H piles to alleviate the combined adverse effects of axial load and cyclic thermal displacements,” Can. J. Civ. Eng., Oct. 2024, doi: 10.1139/cjce-2024-0139.
-
K. Narmashiri, M. Z. Jumaat, and N. H. R. Sulong, “Local stiffening of steel I-beams by using CFRP materials,” Adv. Mater. Res., pp. 3838–3843, Dec. 2010, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.163-167.3838.
-
E. Byklum and J. Amdahl, “A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling,” Thin-Walled Struct., vol. 40, no. 11, pp. 925–953, Nov. 2002, doi: 10.1016/S0263-8231(02)00042-3.
-
J. K. Paik, A. K. Thayamballi, and Y. E. Park, “Local buckling of stiffeners in ship plating,” J. Ship Res., vol. 42, no. 1, pp. 56–67, Mar. 1998, doi: 10.5957/JSR.1998.42.1.56.
-
A. Beyer, A. Khelil, A. Bureau, and N. Boissonnade, “Lateral torsional buckling of hot rolled channel sections – Numerical simulations and design proposal,” ce/papers, vol. 6, Sep. 2023, doi: 10.1002/cepa.2578.
-
M. Bajer et al., “P05.02: Different cross-section in lateral-torsional buckling,” ce/papers, vol. 1, pp. 4704–4711, Sep. 2017, doi: 10.1002/CEPA.532.
-
G. K. Georgoussis and A. Mamou, “The effect of mass eccentricity on the torsional response of building structures,” Struct. Eng. Mech., vol. 67, no. 6, pp. 671–682, Jan. 2018, doi: 10.12989/SEM.2018.67.6.671.
-
IDEA StatiCa, Structural analysis and design software, IDEA StatiCa s.r.o., Brno, Czech Republic, Version 24.0.6.1223. [Online]. Available: https://www.ideastatica.com
-
E. Byklum and J. Amdahl, “A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling,” Thin-Walled Struct., vol. 40, pp. 925–953, 2002.
The effect of stiffeners on asymmetric (UPN) beams under eccentric loads
Year 2025,
Volume: 14 Issue: 2, 1131 - 1150, 30.06.2025
Ahmad Kakhia
,
Esra Eylem Karataş
Abstract
Stiffeners are crucial in enhancing the resistance of steel elements to both point and distributed vertical loads. However, one of the main challenges is the vertical and horizontal deflection experienced by steel beams under asymmetric loading conditions. This study investigates, using IDEA StatiCa software, the effect of stiffeners on the performance of European UPN steel beams subjected to eccentric point loads. A total of 12 beam models stiffened and unstiffened were studied, varying in height and yield strength. Finite element analysis was conducted using the Component-Based Finite Element Method (CBFEM) to accurately capture stress distribution and deflection behavior. The results show that stiffeners significantly reduce both vertical and lateral deflections and improve torsional stability. Furthermore, stiffened and unstiffened beams reached yield strength at similar load levels, but the presence of stiffeners limited post-yield deformations. The findings align with previous studies and confirm the value of stiffeners in enhancing the structural performance of asymmetric beams. This highlights the practical importance of stiffeners in UPN steel beam design, especially under eccentric loading where stability and local deformation are critical concerns.
Ethical Statement
The study is complied with research and publication ethics.
References
-
X. Li, S. Zhou, S. Li, M. Zhang, and J. Sun, “Quick construction method of prefabricated structure,” unpublished, Jul. 19, 2019.
-
Y. Nan, Z. Wu, J. Xiang, and H. Li, “Research progress of long span steel structures,” Academic Journal of Science and Technology, vol. 11, no. 3, pp. 92–96, Jul. 2024, doi: 10.54097/zntta794.
-
I. N. Luzenina and L. Sosnovskikh, “Steel space frame structures of long-span buildings,” AIP Conference Proceedings, Jan. 2022, doi: 10.1063/5.0107369.
-
M. Gagné, B. Duran, and M. V. van Leeuwen, “Economical steel bridges,” IABSE Congress, Jan. 2022, doi: 10.2749/prague.2022.0136.
-
C. Wang and Z. Wu, “Steel structure for construction,” unpublished, Aug. 21, 2013.
-
M. R. M. Zain, N. A. Yahya, L. S. Wee, O. C. Lian, and B. Yunus, “Experimental study on the bearing capacity of concrete blocks loaded through square and circular steel plates,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 513, no. 1, p. 012032, Apr. 2019, doi: 10.1088/1757-899X/513/1/012032.
-
A. J. DeLuzio, Lateral Torsional Buckling, Morgan & Claypool Publishers, 2023, pp. 81–84, doi: 10.1007/978-3-031-40508-2_5.
-
H. R. Kochar and S. K. Kulkarni, “Lateral-torsional buckling of steel beam,” Jan. 2012. [Online]. Available: http://www.ijceronline.com/papers/Vol2_issue6/AG02601780181.pdf
-
C. H. Yoo and S. C. Lee, “Lateral-torsional buckling,” in Stability of Structures, 2011, pp. 327–371, doi: 10.1016/B978-0-12-385122-2.10007-7.
-
A. Kudzys, O. Lukoševičienė, and I. Baltrukėnaitė-Kroškienė, “Structural safety of rolled and welded beams subjected to lateral‐torsional buckling,” J. Civ. Eng. Manag., vol. 16, no. 2, pp. 172–178, Jun. 2010, doi: 10.3846/JCEM.2010.18.
-
T. Yilmaz, N. Kirac, and Ö. Anil, “An alternative evaluation of the LTB behavior of mono-symmetric beam-columns,” Steel Compos. Struct., vol. 30, no. 5, pp. 471–481, Jan. 2019, doi: 10.12989/SCS.2019.30.5.471.
-
J. Nseir et al., “Lateral torsional buckling of cellular steel beams,” Apr. 2012. [Online]. Available: https://biblio.ugent.be/publication/2130334
-
Y. Z. Liu et al., “A novel straight beam element for lateral-distortional deformation analysis of frames and curved beams made of monosymmetric I-sections,” Int. J. Struct. Stab. Dyn., Jan. 2024, doi: 10.1142/s021945542471007x.
-
R. Piotrowski and A. Szychowski, “Lateral torsional buckling of steel beams elastically restrained at the support nodes,” Appl. Sci., vol. 9, no. 9, p. 1944, May 2019, doi: 10.3390/APP9091944.
-
Y. Huang, L. Zhang, Z. Zuo, X. Pan, and X. Du, “Lateral supporting device of integral steel platform and using method,” unpublished, Apr. 02, 2021.
-
A. Kaveh and F. Shokohi, “Optimum design of laterally supported castellated beams using tug of war optimization algorithm,” Struct. Eng. Mech., vol. 58, no. 3, pp. 533–553, 2016.
-
F. Erdal, “The comparative analysis of optimal designed web expanded beams via improved harmony search method,” Struct. Eng. Mech., vol. 54, no. 4, pp. 665–691, 2015.
-
N. A. Mezher, A. R. Noori, and D. Ertürkmen, “Influence of the web opening shapes on the bending and free vibration responses of castellated steel beams,” Int. J. Eng. Technol., vol. 8, no. 2, pp. 83–93, 2023.
-
M. Karalar and M. Dicleli, “Experimental and numerical studies on the proposed stiffener detailing of integral bridge steel H piles to alleviate the combined adverse effects of axial load and cyclic thermal displacements,” Can. J. Civ. Eng., Oct. 2024, doi: 10.1139/cjce-2024-0139.
-
K. Narmashiri, M. Z. Jumaat, and N. H. R. Sulong, “Local stiffening of steel I-beams by using CFRP materials,” Adv. Mater. Res., pp. 3838–3843, Dec. 2010, doi: 10.4028/WWW.SCIENTIFIC.NET/AMR.163-167.3838.
-
E. Byklum and J. Amdahl, “A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling,” Thin-Walled Struct., vol. 40, no. 11, pp. 925–953, Nov. 2002, doi: 10.1016/S0263-8231(02)00042-3.
-
J. K. Paik, A. K. Thayamballi, and Y. E. Park, “Local buckling of stiffeners in ship plating,” J. Ship Res., vol. 42, no. 1, pp. 56–67, Mar. 1998, doi: 10.5957/JSR.1998.42.1.56.
-
A. Beyer, A. Khelil, A. Bureau, and N. Boissonnade, “Lateral torsional buckling of hot rolled channel sections – Numerical simulations and design proposal,” ce/papers, vol. 6, Sep. 2023, doi: 10.1002/cepa.2578.
-
M. Bajer et al., “P05.02: Different cross-section in lateral-torsional buckling,” ce/papers, vol. 1, pp. 4704–4711, Sep. 2017, doi: 10.1002/CEPA.532.
-
G. K. Georgoussis and A. Mamou, “The effect of mass eccentricity on the torsional response of building structures,” Struct. Eng. Mech., vol. 67, no. 6, pp. 671–682, Jan. 2018, doi: 10.12989/SEM.2018.67.6.671.
-
IDEA StatiCa, Structural analysis and design software, IDEA StatiCa s.r.o., Brno, Czech Republic, Version 24.0.6.1223. [Online]. Available: https://www.ideastatica.com
-
E. Byklum and J. Amdahl, “A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling,” Thin-Walled Struct., vol. 40, pp. 925–953, 2002.