Review
BibTex RIS Cite

Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri

Year 2024, Volume: 6 Issue: 2, 427 - 435, 22.08.2024
https://doi.org/10.46413/boneyusbad.1415742

Abstract

Bu derlemenin amacı, epigallokateşin gallatın Parkinson hastalığı patogenezi üzerindeki koruyucu etkilerini incelemektir. Son yıllarda yapılan epidemiyolojik çalışmalarda Parkinson hastalığının artış gösterdiği ve son 25 yılda ikiye katlandığı vurgulanmaktadır. Bundan dolayı hastalığın patogenezine etki edebilen faktörleri değerlendirmek önem kazanmaktadır. Yapılan çalışmalarda vücutta meydana gelen oksidatif stres, inflamasyon ve α-sinüklein proteinin anormal agregasyonu gibi faktörlerin Parkinson’un patogenezinde rol oynadığı saptanmıştır. Çay bileşenlerinden epigallokateşin gallat antiinflamatuar özelliği, oksidatif stres ve α-sinüklein kaynaklı hasara karşı koruyucu etkisi ile Parkinson’un patogeneziyle ilişkili olabilmektedir. Sonuç olarak, epigallokateşin gallatın Parkinson üzerindeki koruyucu etkisine yönelik klinik araştırmalar azdır. Gelecek araştırmalarda daha fazla kanıta dayalı klinik çalışmalarla epigallokateşin gallatın Parkinson üzerindeki etkinliği değerlendirilebilir.

References

  • Armstrong, M. J., Okun, M. S. (2020). Diagnosis and treatment of Parkinson disease: A review. Jama, 323(6), 548-560. doi: 10.1001/jama.2019.22360
  • Barrera, G., Pizzimenti, S., Daga, M., Dianzani, C., Arcaro, A., Cetrangolo, G. P., … Gentile, F. (2018). Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants (Basel, Switzerland), 7(8), 102. doi: 10.3390/antiox7080102
  • Bazyar, H., Hosseini, S. A., Saradar, S., Mombaini, D., Allivand, M., Labibzadeh, M., … Alipour, M. (2020). Effects of epigallocatechin-3-gallate of Camellia sinensis leaves on blood pressure, lipid profile, atherogenic index of plasma and some inflammatory and antioxidant markers in type 2 diabetes mellitus patients: a clinical trial. Journal of Complementary & Integrative Medicine, 18(2), 405–411. doi: 10.1515/jcim-2020-0090
  • Berg, D., Postuma, R. B., Adler, C. H., Bloem, B. R., Chan, P., Dubois, B., … Deuschl, G. (2015). MDS research criteria for prodromal Parkinson's disease. Movement Disorders: Official Journal of the Movement Disorder Society, 30(12), 1600–1611. doi: 10.1002/mds.26431
  • Błaszczyk, J. W. (1998). Motor deficiency in Parkinson's disease. Acta Neurobiologiae Experimentalis, 58(1), 79-93. doi: 10.55782/ane-1998-1262
  • Block, M. L., Zecca, L., Hong, J. S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews. Neuroscience, 8(1), 57–69. doi: 10.1038/nrn2038
  • Bloem, B. R, Okun, M. S., Klein, C. (2021). Parkinson's disease. Lancet (London, England), 397(10291), 2284–2303. doi: 10.1016/S0140-6736(21)00218-X
  • Braicu, C., Ladomery, M. R., Chedea, V. S., Irimie, A., Berindan-Neagoe, I. (2013). The relationship between the structure and biological actions of green tea catechins. Food Chemistry, 141(3), 3282-3289. doi: 10.1016/j.foodchem.2013.05.122
  • Brochard, V., Combadière, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., ... Hunot, S. (2008). Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. The Journal of Clinical Investigation, 119(1). doi: 10.1172/JCI36470
  • Byun, E. B., Kim, W. S., Sung, N. Y., Byun, E. H. (2018). Epigallocatechin-3-gallate regulates anti-inflammatory action through 67-kDa laminin receptor-mediated tollip signaling induction in lipopolysaccharide-stimulated human intestinal epithelial cells. Cellular Physiology and Biochemistry, 46(5), 2072-2081. doi: 10.1159/000489447
  • Cabrera, C., Artacho, R., Giménez, R. (2006). Beneficial effects of green tea—a review. Journal of the American College of Nutrition, 25(2), 79–99. doi: 10.1080/07315724.2006.10719518.
  • Chan, P., Qin, Z., Zheng, Z., Zhang, L. (2009). A randomized, double-blind, placebo-controlled, delayed start study to assess safty, tolerability and efflcacy of green tea polyphenols in Parkinson's disease (P2.204). Parkinsonism Related Disorders, 15, 145. doi: 10.1016/S1353-8020(09)70555-3
  • Dickson, D. W. (2012). Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harbor Perspectives in Medicine, 2(8), a009258. doi: 10.1101/cshperspect.a009258
  • Dorsey, E., Sherer, T., Okun, M. S., Bloem, B. R. (2018). The emerging evidence of the Parkinson pandemic. Journal of Parkinson's Disease, 8(s1), 3-8. doi: 10.3233/JPD-181474
  • Elsworth, J. D. (2020). Parkinson's disease treatment: past, present, and future. Journal of Neural Transmission (Vienna, Austria: 1996), 127(5), 785–791. doi: 10.1007/s00702-020-02167-1
  • Fernandes, L., Messias, B., Pereira-Neves, A., Azevedo, E. P., Araújo, J., Foguel, D., … Palhano, F. L. (2020). Green tea polyphenol microparticles based on the oxidative coupling of EGCG inhibit amyloid aggregation/cytotoxicity and serve as a platform for drug delivery. ACS Biomaterials Science & Engineering, 6(8), 4414-4423. doi: 10.1021/acsbiomaterials.0c00188
  • Gelders, G., Baekelandt, V., Van der Perren, A. (2018). Linking neuroinflammation and neurodegeneration in Parkinson’s disease. Journal of Immunology Research, 2018, 4784268. doi: 10.1155/2018/4784268
  • Global Burden of Disease (GBD) 2016 Neurology Collaborators. (2019). Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the global burden of disease study 2016. The Lancet Neurology, 18(5), 459–480. doi: 10.1016/S1474-4422(18)30499-X
  • Gonçalves, P. B., Sodero, A. C. R., Cordeiro, Y. (2021). Green tea epigallocatechin-3-gallate (egcg) targeting protein misfolding in drug discovery for neurodegenerative diseases. Biomolecules, 11(5), 767. doi: 10.3390/biom11050767
  • Hu, G., Bidel, S., Jousilahti, P., Antikainen, R., Tuomilehto, J. (2007). Coffee and tea consumption and the risk of Parkinson's disease. Movement Disorders, 22(15), 2242- 2248. doi: 10.1002/mds.21706
  • Iakovenko, E. V., Abramycheva, N. Y., Fedotova, E. Y., Illarioshkin, S. N. (2020). The SNCA-rep1 polymorphic locus: association with the risk of Parkinson's disease and SNCA gene methylation. Acta Naturae, 12(2), 105–110. doi: 10.32607/actanaturae.10956
  • Jankovic, J., Tan, E. K. (2020). Parkinson's disease: etiopathogenesis and treatment. Journal of Neurology, Neurosurgery, and Psychiatry, 91(8), 795–808. doi: 10.1136/jnnp-2019-322338
  • Kalia, L. V., Lang, A. E. (2015). Parkinson's disease. The Lancet, 386(9996), 896-912. doi: 10.1016/S0140-6736(14)61393-3
  • Kang, K. S, Wen, Y., Yamabe, N., Fukui, M., Bishop, S. C., Zhu, B. T. (2010). Dual beneficial effects of (−)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: In vitro and in vivo studies. PLoS One, 5(8), e11951. doi: 10.1371/journal.pone.0011951
  • Karas, D., Ulrichová, J., Valentová, K. (2017). Galloylation of polyphenols alters their biological activity. Food and Chemical Toxicology, 105, 223-240. doi: 10.1016/j.fct.2017.04.021
  • Kochman, J., Jakubczyk, K., Antoniewicz, J., Mruk, H., Janda, K. (2020). Health benefits and chemical composition of matcha green tea: A review. Molecules (Basel, Switzerland), 26(1), 85. doi: 10.3390/molecules26010085
  • Lassarén, P., Lindblad, C., Frostell, A., Carpenter, K. L. H., Guilfoyle, M. R., Hutchinson, P. J. A., … Thelin, E. P. (2021). Systemic inflammation alters the neuroinflammatory response: A prospective clinical trial in traumatic brain injury. Journal of Neuroinflammation, 18(1), 221. doi: 10.1186/s12974-021-02264-2
  • Liang, Y., Ip, M. S. M., Mak, J. C. W. (2019). (-)-Epigallocatechin-3-gallate suppresses cigarette smoke-induced inflammation in human cardiomyocytes via ROS-mediated MAPK and NF-κB pathways. Phytomedicine, 58, 152768. doi: 10.1016/j.phymed.2018.11.028
  • Lorenzen, N., Nielsen, S. B., Yoshimura, Y., Vad, B. S., Andersen, C. B., Betzer, C., ... Otzen, D. E. (2014). How epigallocatechin gallate can ınhibit α-synuclein oligomer toxicity in vitro. Journal of Biological Chemistry, 289(31), 21299-21310. doi: 10.1074/jbc.M114.554667
  • Mandel S., Maor G., Youdim M. B. (2004). Iron and alpha-synuclein in the substantia nigra of mptp-treated mice: effect of neuroprotective drugs r-apomorphine and green tea polyphenol (−)-epigallocatechin-3-gallate. Journal of Molecular Neuroscience, 24(3), 401- 416. doi: 10.1385/JMN:24:3:401
  • Mehra, S., Sahay, S., Maji, S. K. (2019). α-synuclein misfolding and aggregation: implications in Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1867(10), 890-908. doi: 10.1016/j.bbapap.2019.03.001
  • Mellick, G. D., Maraganore, D. M., Silburn, P. A. (2005). Australian data and meta-analysis lend support for alpha-synuclein (NACP-Rep1) as a risk factor for Parkinson's disease. Neuroscience Letters, 375(2), 112-116. doi: 10.1016/j.neulet.2004.10.078
  • Miller, D. B., O’Callaghan, J. P. (2015). Biomarkers of Parkinson’s disease: present and future. Metabolism, 64(3), S40-S46. doi: 10.1016/j.metabol.2014.10.030
  • Musial, C., Kuban-Jankowska, A., Gorska-Ponikowska, M. (2020). Beneficial properties of green tea catechins. International Journal of Molecular Sciences, 21(5), 1744. doi: 10.3390/ijms21051744
  • Niemann, N., Jankovic, J. (2019). Juvenile parkinsonism: differential diagnosis, genetics, and treatment. Parkinsonism & Related Disorders, 67, 74-89. doi: 10.1016/j.parkreldis.2019.06.025
  • Ntamo, Y., Jack, B., Ziqubu, K., Mazibuko-Mbeje, S. E., Nkambule, B. B., Nyambuya, T. M., … Dludla, P. V. (2024). Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties. Critical Reviews In Food Science and Nutrition, 64(1), 87–109. doi: 10.1080/10408398.2022.2104805
  • Obeso, J. A, Stamelou, M., Goetz, C. G., Poewe, W., Lang, A. E., Weintraub, D., … Stoessl, A. J. (2017). Past, present, and future of Parkinson's disease: A special essay on the 200th anniversary of the shaking palsy. Movement Disorders: Official Journal of the Movement Disorder Society, 32(9), 1264–1310. doi: 10.1002/mds.27115
  • Olguín, H. J, Guzmán, D. C, García, E. H., Mejía, G. B. (2016). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 1-13. doi: 10.1155/2016/9730467
  • Ouyang, J., Zhu, K., Liu, Z., Huang, J. (2020). Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxidative Medicine and Cellular Longevity, 2020, 9723686. doi: 10.1155/2020/9723686.
  • Pękal, A., Dróżdż, P., Biesaga, M., Pyrzynska, K. (2011). Evaluation of the antioxidant properties of fruit and flavoured black teas. European Journal of Nutrition, 50(8), 681–688. doi: 10.1007/s00394-011-0179-2
  • Perdices, L., Fuentes-Broto, L., Segura, F., Cavero, A., Insa-Sánchez, G., Sánchez-Cano, A. I., ... Pinilla, I. (2022). Systemic epigallocatechin gallate protects against retinal degeneration and hepatic oxidative stress in the P23H-1 rat. Neural Regeneration Research, 17(3), 625-631. doi: 10.4103/1673-5374.320990
  • Peterson, L. J., Flood, P. M. (2012). Oxidative stress and microglial cells in Parkinson's disease. Mediators of Inflammation, 2012, 401264. doi: 10.1155/2012/401264
  • Pfeiffer, R. F. (2016). Non-motor symptoms in Parkinson's disease. Parkinsonism & Related Disorders, 22, S119-S122. doi: 10.1016/j.parkreldis.2015.09.004
  • Postuma, R. B, Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., … Deuschl, G. (2015). MDS clinical diagnostic criteria for Parkinson's disease. Movement Disorders: Official Journal of the Movement Disorder Society, 30(12), 1591–1601. doi: 10.1002/mds.26424
  • Rahmani, A. H., Al Shabrmi, F. M., Allemailem, K. S., Aly, S. M., Khan, M. A. (2015). Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. Biomed Research International, 2015, 925640. doi: 10.1155/2015/925640
  • Saeed, A. A., Genové, G., Li, T., Lütjohann, D., Olin, M., Mast, N. ... Björkhem, I. (2014). Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain. Journal of Biological Chemistry, 289(34), 23712-23722. doi: 10.1074/jbc.M114.556159
  • Sanchez-Guajardo, V., Tentillier, N., Romero-Ramos, M. (2015). The relation between α-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience, 302, 47-58. doi: 10.1016/j.neuroscience.2015.02.008
  • Seppi, K., Ray Chaudhuri, K., Coelho, M., Fox, S. H., Katzenschlager, R., Perez Lloret, S., … the collaborators of the Parkinson's Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders
  • Society Evidence-Based Medicine Committee. (2019). Update on treatments for nonmotor symptoms of Parkinson's disease-an evidence-based medicine review. Movement Disorders: Official Journal of the Movement Disorder Society, 34(2), 180–198. doi: 10.1002/mds.27602
  • Shu, L., Zhang, Y., Sun, Q., Pan, H., Guo, J., Tang, B. (2018). SNCA REP-1 and Parkinson’s disease. Neuroscience Letters, 682, 79-84. doi: 10.1016/j.neulet.2018.05.043
  • Singh, N. A., Mandal, A. K., Khan, Z. A. (2016). Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutrition Journal, 15(1), 60. doi: 10.1186/s12937-016-0179-4
  • Suzuki, T., Pervin, M., Goto, S., Isemura, M., Nakamura, Y. (2016). Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules, 21(10), 1305. doi: 10.3390/molecules21101305
  • Tseng, H. C., Wang, M. H., Chang, K. C., Soung, H. S., Fang, C.H, Lin, Y. W., … Tsai, C. C. (2020). Protective effect of (-) epigallocatechin-3-gallate on rotenone-induced parkinsonism-like symptoms in rats. Neurotoxicity Research, 37(3), 669–682. doi: 10.1007/s12640-019-00143-6
  • Umeno, A., Biju, V., Yoshida, Y. (2017). In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as alzheimer’s disease, Parkinson’s disease, and diabetes. Free Radical Research, 51(4), 413-427. doi: 10.1080/10715762.2017.1315114
  • World Health Organization (WHO). (2023). Parkinson disease. Erişim Tarihi 02.10.2023, https://www.who.int/news-room/fact sheets/detail/parkinson-disease.
  • Yang, Y., Qin, Y. J., Yip, Y. W., Chan, K. P., Chu, K. O., Chu, W. K., ... Chan, S. O. (2016). Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats. Scientific Reports, 6(1), 29546. doi: 10.1038/srep29546
  • Yuan, H., Li, Y., Ling, F., Guan, Y., Zhang, D., Zhu, Q., … Niu, Y. (2020). The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. Aging Cell, 19(9), e13199. doi: 10.1111/acel.13199
  • Zhao, L., Liu, S., Xu, J., Li, W., Duan, G., Wang, H., ... Zhou, R. (2017). A new molecular mechanism underlying the egcg-mediated autophagic modulation of afp in hepg2 cells. Cell Death & Disease, 8(11), e3160. doi: 10.1038/cddis.2017.563
  • Zwolak, I. (2021). Epigallocatechin gallate for management of heavy metal-induced oxidative stress: mechanisms of action, efficacy, and concerns. International Journal of Molecular Sciences, 22(8), 4027. doi: 10.3390/ijms22084027

Potential Protective Effects of Epigallocatechin Gallate (EGCG) on Parkinson's Disease Pathogenesis

Year 2024, Volume: 6 Issue: 2, 427 - 435, 22.08.2024
https://doi.org/10.46413/boneyusbad.1415742

Abstract

The aim of this review is to examine the protective effects of epigallocatechin gallate on the pathogenesis of Parkinson's disease. Epidemiological studies conducted in recent years emphasize that Parkinson's disease has increased and has doubled in the last 25 years. Therefore, it becomes important to evaluate the factors that may affect the pathogenesis of the disease. Studies have found that factors such as oxidative stress, inflammation and abnormal aggregation of α-synuclein protein occurring in the body play a role in the pathogenesis of Parkinson's. Epigallocatechin gallate, one of the tea components, may be related to the pathogenesis of Parkinson's with its anti-inflammatory properties and protective effect against oxidative stress and α-synuclein-induced damage. As a result, clinical studies on the protective effect of epigallocatechin gallate on Parkinson's disease are scarce. In future research, the effectiveness of epigallocatechin gallate on Parkinson's disease can be evaluated with more evidence-based clinical studies.

References

  • Armstrong, M. J., Okun, M. S. (2020). Diagnosis and treatment of Parkinson disease: A review. Jama, 323(6), 548-560. doi: 10.1001/jama.2019.22360
  • Barrera, G., Pizzimenti, S., Daga, M., Dianzani, C., Arcaro, A., Cetrangolo, G. P., … Gentile, F. (2018). Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants (Basel, Switzerland), 7(8), 102. doi: 10.3390/antiox7080102
  • Bazyar, H., Hosseini, S. A., Saradar, S., Mombaini, D., Allivand, M., Labibzadeh, M., … Alipour, M. (2020). Effects of epigallocatechin-3-gallate of Camellia sinensis leaves on blood pressure, lipid profile, atherogenic index of plasma and some inflammatory and antioxidant markers in type 2 diabetes mellitus patients: a clinical trial. Journal of Complementary & Integrative Medicine, 18(2), 405–411. doi: 10.1515/jcim-2020-0090
  • Berg, D., Postuma, R. B., Adler, C. H., Bloem, B. R., Chan, P., Dubois, B., … Deuschl, G. (2015). MDS research criteria for prodromal Parkinson's disease. Movement Disorders: Official Journal of the Movement Disorder Society, 30(12), 1600–1611. doi: 10.1002/mds.26431
  • Błaszczyk, J. W. (1998). Motor deficiency in Parkinson's disease. Acta Neurobiologiae Experimentalis, 58(1), 79-93. doi: 10.55782/ane-1998-1262
  • Block, M. L., Zecca, L., Hong, J. S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews. Neuroscience, 8(1), 57–69. doi: 10.1038/nrn2038
  • Bloem, B. R, Okun, M. S., Klein, C. (2021). Parkinson's disease. Lancet (London, England), 397(10291), 2284–2303. doi: 10.1016/S0140-6736(21)00218-X
  • Braicu, C., Ladomery, M. R., Chedea, V. S., Irimie, A., Berindan-Neagoe, I. (2013). The relationship between the structure and biological actions of green tea catechins. Food Chemistry, 141(3), 3282-3289. doi: 10.1016/j.foodchem.2013.05.122
  • Brochard, V., Combadière, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., ... Hunot, S. (2008). Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. The Journal of Clinical Investigation, 119(1). doi: 10.1172/JCI36470
  • Byun, E. B., Kim, W. S., Sung, N. Y., Byun, E. H. (2018). Epigallocatechin-3-gallate regulates anti-inflammatory action through 67-kDa laminin receptor-mediated tollip signaling induction in lipopolysaccharide-stimulated human intestinal epithelial cells. Cellular Physiology and Biochemistry, 46(5), 2072-2081. doi: 10.1159/000489447
  • Cabrera, C., Artacho, R., Giménez, R. (2006). Beneficial effects of green tea—a review. Journal of the American College of Nutrition, 25(2), 79–99. doi: 10.1080/07315724.2006.10719518.
  • Chan, P., Qin, Z., Zheng, Z., Zhang, L. (2009). A randomized, double-blind, placebo-controlled, delayed start study to assess safty, tolerability and efflcacy of green tea polyphenols in Parkinson's disease (P2.204). Parkinsonism Related Disorders, 15, 145. doi: 10.1016/S1353-8020(09)70555-3
  • Dickson, D. W. (2012). Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harbor Perspectives in Medicine, 2(8), a009258. doi: 10.1101/cshperspect.a009258
  • Dorsey, E., Sherer, T., Okun, M. S., Bloem, B. R. (2018). The emerging evidence of the Parkinson pandemic. Journal of Parkinson's Disease, 8(s1), 3-8. doi: 10.3233/JPD-181474
  • Elsworth, J. D. (2020). Parkinson's disease treatment: past, present, and future. Journal of Neural Transmission (Vienna, Austria: 1996), 127(5), 785–791. doi: 10.1007/s00702-020-02167-1
  • Fernandes, L., Messias, B., Pereira-Neves, A., Azevedo, E. P., Araújo, J., Foguel, D., … Palhano, F. L. (2020). Green tea polyphenol microparticles based on the oxidative coupling of EGCG inhibit amyloid aggregation/cytotoxicity and serve as a platform for drug delivery. ACS Biomaterials Science & Engineering, 6(8), 4414-4423. doi: 10.1021/acsbiomaterials.0c00188
  • Gelders, G., Baekelandt, V., Van der Perren, A. (2018). Linking neuroinflammation and neurodegeneration in Parkinson’s disease. Journal of Immunology Research, 2018, 4784268. doi: 10.1155/2018/4784268
  • Global Burden of Disease (GBD) 2016 Neurology Collaborators. (2019). Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the global burden of disease study 2016. The Lancet Neurology, 18(5), 459–480. doi: 10.1016/S1474-4422(18)30499-X
  • Gonçalves, P. B., Sodero, A. C. R., Cordeiro, Y. (2021). Green tea epigallocatechin-3-gallate (egcg) targeting protein misfolding in drug discovery for neurodegenerative diseases. Biomolecules, 11(5), 767. doi: 10.3390/biom11050767
  • Hu, G., Bidel, S., Jousilahti, P., Antikainen, R., Tuomilehto, J. (2007). Coffee and tea consumption and the risk of Parkinson's disease. Movement Disorders, 22(15), 2242- 2248. doi: 10.1002/mds.21706
  • Iakovenko, E. V., Abramycheva, N. Y., Fedotova, E. Y., Illarioshkin, S. N. (2020). The SNCA-rep1 polymorphic locus: association with the risk of Parkinson's disease and SNCA gene methylation. Acta Naturae, 12(2), 105–110. doi: 10.32607/actanaturae.10956
  • Jankovic, J., Tan, E. K. (2020). Parkinson's disease: etiopathogenesis and treatment. Journal of Neurology, Neurosurgery, and Psychiatry, 91(8), 795–808. doi: 10.1136/jnnp-2019-322338
  • Kalia, L. V., Lang, A. E. (2015). Parkinson's disease. The Lancet, 386(9996), 896-912. doi: 10.1016/S0140-6736(14)61393-3
  • Kang, K. S, Wen, Y., Yamabe, N., Fukui, M., Bishop, S. C., Zhu, B. T. (2010). Dual beneficial effects of (−)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: In vitro and in vivo studies. PLoS One, 5(8), e11951. doi: 10.1371/journal.pone.0011951
  • Karas, D., Ulrichová, J., Valentová, K. (2017). Galloylation of polyphenols alters their biological activity. Food and Chemical Toxicology, 105, 223-240. doi: 10.1016/j.fct.2017.04.021
  • Kochman, J., Jakubczyk, K., Antoniewicz, J., Mruk, H., Janda, K. (2020). Health benefits and chemical composition of matcha green tea: A review. Molecules (Basel, Switzerland), 26(1), 85. doi: 10.3390/molecules26010085
  • Lassarén, P., Lindblad, C., Frostell, A., Carpenter, K. L. H., Guilfoyle, M. R., Hutchinson, P. J. A., … Thelin, E. P. (2021). Systemic inflammation alters the neuroinflammatory response: A prospective clinical trial in traumatic brain injury. Journal of Neuroinflammation, 18(1), 221. doi: 10.1186/s12974-021-02264-2
  • Liang, Y., Ip, M. S. M., Mak, J. C. W. (2019). (-)-Epigallocatechin-3-gallate suppresses cigarette smoke-induced inflammation in human cardiomyocytes via ROS-mediated MAPK and NF-κB pathways. Phytomedicine, 58, 152768. doi: 10.1016/j.phymed.2018.11.028
  • Lorenzen, N., Nielsen, S. B., Yoshimura, Y., Vad, B. S., Andersen, C. B., Betzer, C., ... Otzen, D. E. (2014). How epigallocatechin gallate can ınhibit α-synuclein oligomer toxicity in vitro. Journal of Biological Chemistry, 289(31), 21299-21310. doi: 10.1074/jbc.M114.554667
  • Mandel S., Maor G., Youdim M. B. (2004). Iron and alpha-synuclein in the substantia nigra of mptp-treated mice: effect of neuroprotective drugs r-apomorphine and green tea polyphenol (−)-epigallocatechin-3-gallate. Journal of Molecular Neuroscience, 24(3), 401- 416. doi: 10.1385/JMN:24:3:401
  • Mehra, S., Sahay, S., Maji, S. K. (2019). α-synuclein misfolding and aggregation: implications in Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1867(10), 890-908. doi: 10.1016/j.bbapap.2019.03.001
  • Mellick, G. D., Maraganore, D. M., Silburn, P. A. (2005). Australian data and meta-analysis lend support for alpha-synuclein (NACP-Rep1) as a risk factor for Parkinson's disease. Neuroscience Letters, 375(2), 112-116. doi: 10.1016/j.neulet.2004.10.078
  • Miller, D. B., O’Callaghan, J. P. (2015). Biomarkers of Parkinson’s disease: present and future. Metabolism, 64(3), S40-S46. doi: 10.1016/j.metabol.2014.10.030
  • Musial, C., Kuban-Jankowska, A., Gorska-Ponikowska, M. (2020). Beneficial properties of green tea catechins. International Journal of Molecular Sciences, 21(5), 1744. doi: 10.3390/ijms21051744
  • Niemann, N., Jankovic, J. (2019). Juvenile parkinsonism: differential diagnosis, genetics, and treatment. Parkinsonism & Related Disorders, 67, 74-89. doi: 10.1016/j.parkreldis.2019.06.025
  • Ntamo, Y., Jack, B., Ziqubu, K., Mazibuko-Mbeje, S. E., Nkambule, B. B., Nyambuya, T. M., … Dludla, P. V. (2024). Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties. Critical Reviews In Food Science and Nutrition, 64(1), 87–109. doi: 10.1080/10408398.2022.2104805
  • Obeso, J. A, Stamelou, M., Goetz, C. G., Poewe, W., Lang, A. E., Weintraub, D., … Stoessl, A. J. (2017). Past, present, and future of Parkinson's disease: A special essay on the 200th anniversary of the shaking palsy. Movement Disorders: Official Journal of the Movement Disorder Society, 32(9), 1264–1310. doi: 10.1002/mds.27115
  • Olguín, H. J, Guzmán, D. C, García, E. H., Mejía, G. B. (2016). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 1-13. doi: 10.1155/2016/9730467
  • Ouyang, J., Zhu, K., Liu, Z., Huang, J. (2020). Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxidative Medicine and Cellular Longevity, 2020, 9723686. doi: 10.1155/2020/9723686.
  • Pękal, A., Dróżdż, P., Biesaga, M., Pyrzynska, K. (2011). Evaluation of the antioxidant properties of fruit and flavoured black teas. European Journal of Nutrition, 50(8), 681–688. doi: 10.1007/s00394-011-0179-2
  • Perdices, L., Fuentes-Broto, L., Segura, F., Cavero, A., Insa-Sánchez, G., Sánchez-Cano, A. I., ... Pinilla, I. (2022). Systemic epigallocatechin gallate protects against retinal degeneration and hepatic oxidative stress in the P23H-1 rat. Neural Regeneration Research, 17(3), 625-631. doi: 10.4103/1673-5374.320990
  • Peterson, L. J., Flood, P. M. (2012). Oxidative stress and microglial cells in Parkinson's disease. Mediators of Inflammation, 2012, 401264. doi: 10.1155/2012/401264
  • Pfeiffer, R. F. (2016). Non-motor symptoms in Parkinson's disease. Parkinsonism & Related Disorders, 22, S119-S122. doi: 10.1016/j.parkreldis.2015.09.004
  • Postuma, R. B, Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., … Deuschl, G. (2015). MDS clinical diagnostic criteria for Parkinson's disease. Movement Disorders: Official Journal of the Movement Disorder Society, 30(12), 1591–1601. doi: 10.1002/mds.26424
  • Rahmani, A. H., Al Shabrmi, F. M., Allemailem, K. S., Aly, S. M., Khan, M. A. (2015). Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. Biomed Research International, 2015, 925640. doi: 10.1155/2015/925640
  • Saeed, A. A., Genové, G., Li, T., Lütjohann, D., Olin, M., Mast, N. ... Björkhem, I. (2014). Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain. Journal of Biological Chemistry, 289(34), 23712-23722. doi: 10.1074/jbc.M114.556159
  • Sanchez-Guajardo, V., Tentillier, N., Romero-Ramos, M. (2015). The relation between α-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience, 302, 47-58. doi: 10.1016/j.neuroscience.2015.02.008
  • Seppi, K., Ray Chaudhuri, K., Coelho, M., Fox, S. H., Katzenschlager, R., Perez Lloret, S., … the collaborators of the Parkinson's Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders
  • Society Evidence-Based Medicine Committee. (2019). Update on treatments for nonmotor symptoms of Parkinson's disease-an evidence-based medicine review. Movement Disorders: Official Journal of the Movement Disorder Society, 34(2), 180–198. doi: 10.1002/mds.27602
  • Shu, L., Zhang, Y., Sun, Q., Pan, H., Guo, J., Tang, B. (2018). SNCA REP-1 and Parkinson’s disease. Neuroscience Letters, 682, 79-84. doi: 10.1016/j.neulet.2018.05.043
  • Singh, N. A., Mandal, A. K., Khan, Z. A. (2016). Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutrition Journal, 15(1), 60. doi: 10.1186/s12937-016-0179-4
  • Suzuki, T., Pervin, M., Goto, S., Isemura, M., Nakamura, Y. (2016). Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules, 21(10), 1305. doi: 10.3390/molecules21101305
  • Tseng, H. C., Wang, M. H., Chang, K. C., Soung, H. S., Fang, C.H, Lin, Y. W., … Tsai, C. C. (2020). Protective effect of (-) epigallocatechin-3-gallate on rotenone-induced parkinsonism-like symptoms in rats. Neurotoxicity Research, 37(3), 669–682. doi: 10.1007/s12640-019-00143-6
  • Umeno, A., Biju, V., Yoshida, Y. (2017). In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as alzheimer’s disease, Parkinson’s disease, and diabetes. Free Radical Research, 51(4), 413-427. doi: 10.1080/10715762.2017.1315114
  • World Health Organization (WHO). (2023). Parkinson disease. Erişim Tarihi 02.10.2023, https://www.who.int/news-room/fact sheets/detail/parkinson-disease.
  • Yang, Y., Qin, Y. J., Yip, Y. W., Chan, K. P., Chu, K. O., Chu, W. K., ... Chan, S. O. (2016). Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats. Scientific Reports, 6(1), 29546. doi: 10.1038/srep29546
  • Yuan, H., Li, Y., Ling, F., Guan, Y., Zhang, D., Zhu, Q., … Niu, Y. (2020). The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. Aging Cell, 19(9), e13199. doi: 10.1111/acel.13199
  • Zhao, L., Liu, S., Xu, J., Li, W., Duan, G., Wang, H., ... Zhou, R. (2017). A new molecular mechanism underlying the egcg-mediated autophagic modulation of afp in hepg2 cells. Cell Death & Disease, 8(11), e3160. doi: 10.1038/cddis.2017.563
  • Zwolak, I. (2021). Epigallocatechin gallate for management of heavy metal-induced oxidative stress: mechanisms of action, efficacy, and concerns. International Journal of Molecular Sciences, 22(8), 4027. doi: 10.3390/ijms22084027
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Nutritional Science
Journal Section REVIEW ARTICLE
Authors

Elif Yıldız 0000-0003-3350-4777

İlknur Gökçe Yıldırım 0000-0001-8788-2242

Early Pub Date August 17, 2024
Publication Date August 22, 2024
Submission Date January 6, 2024
Acceptance Date May 16, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Yıldız, E., & Yıldırım, İ. G. (2024). Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi, 6(2), 427-435. https://doi.org/10.46413/boneyusbad.1415742
AMA Yıldız E, Yıldırım İG. Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. August 2024;6(2):427-435. doi:10.46413/boneyusbad.1415742
Chicago Yıldız, Elif, and İlknur Gökçe Yıldırım. “Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi 6, no. 2 (August 2024): 427-35. https://doi.org/10.46413/boneyusbad.1415742.
EndNote Yıldız E, Yıldırım İG (August 1, 2024) Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi 6 2 427–435.
IEEE E. Yıldız and İ. G. Yıldırım, “Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri”, Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi, vol. 6, no. 2, pp. 427–435, 2024, doi: 10.46413/boneyusbad.1415742.
ISNAD Yıldız, Elif - Yıldırım, İlknur Gökçe. “Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi 6/2 (August 2024), 427-435. https://doi.org/10.46413/boneyusbad.1415742.
JAMA Yıldız E, Yıldırım İG. Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. 2024;6:427–435.
MLA Yıldız, Elif and İlknur Gökçe Yıldırım. “Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi, vol. 6, no. 2, 2024, pp. 427-35, doi:10.46413/boneyusbad.1415742.
Vancouver Yıldız E, Yıldırım İG. Epigallokateşin Gallatın (EGCG) Parkinson Hastalığı Patogenezinde Potansiyel Koruyucu Etkileri. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. 2024;6(2):427-35.

23788 Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.