The effect of high boron additions on the microstructure of cast steel
Year 2020,
Volume: 5 Issue: 2, 108 - 114, 29.06.2020
Ömer Faruk Murathan
,
Kadir Kocatepe
,
Mehmet Erdoğan
Abstract
This study summarizes research into the effect of high boron additions on the microstructure of cast steel under the certain carbon (0.42 C wt.%) and chromium (11.65 Cr wt.%) content. Varying amounts of boron between 0.48 - 4.75 wt.% was added into steel melt. The boron analysis of the alloys was conducted by wet chemical analysis. The microstructure of the specimens was characterized with optical microscope, Scanning Electron Microscope with Energy Dispersive X-Ray Analysis (SEM/EDX) and X-Ray Diffraction (X-RD). The experimental results showed that high boron steel was successfully produced by sand casting with high casting yield. The microstructure of boron alloyed high chromium cast steel consists of three dimensional networks of M2B borides surrounding the martensitic matrix in as cast condition. Under the certain carbon and chromium content, boron carbide volume fraction is directly depended on the boron additions. Due to the high amount of chromium and boron, carbides and borides were embedded in each other in all additions. In the specimens having less than 2.44 B wt.%, carbide/boride structure was fishbone type with dendritic distribution over the matrix whereas rod/needle like structure with randomly distribute was observed in specimens having 2.44 - 4.75 B wt.%. In all specimens containing boron, M2B and M7 (C, B)5 type carbides/boride peaks were detected by X-RD analysis.
Supporting Institution
Gazi Üniversitesi Bilimsel Araştırma Projeleri (BAP)
Project Number
07/2018-06
Thanks
The authors appreciate the financial support from the Gazi University Projects of Scientific Investigation (BAP) within the project “07/2018-06”. The authors are grateful to Middle East Technical University (METU) for ICP-OES analysis.
References
- 1. Krauss, G. (2015). Steels: processing, structure, and performance. Asm International.
- 2. Bhadeshia, H., & Honeycombe, R. (2017). Steels: microstructure and properties. Butterworth-Heinemann.
- 3. Banerji, S. K., ve Morral, J. E. (1979). Boron in Steel. Milwaukee, Wis, 18 Sept. 1979, 1980.
- 4. Davis, J. R., Mills, K. M., & Lampman, S. R. (1990). Metals handbook. Vol. 1. Properties and selection: Irons, steels, and high-performance alloys. ASM International, Materials Park, Ohio 44073, USA, 1990. 1063.
- 5. Llewellyn, D. T., & Cook, W. T. (1974). Metallurgy of boron-treated low-alloy steels. Metals Technology, 1(1), 517-529.
- 6. Hwang, B., Suh, D. W., & Kim, S. J. (2011). Austenitizing temperature and hardenability of low-carbon boron steels. Scripta Materialia, 64(12), 1118-1120.
- 7. Suri, A. K., Subramanian, C., Sonber, J. K., & Murthy, T. C. (2010). Synthesis and consolidation of boron carbide: a review. International Materials Reviews, 55(1), 4-40.
- 8. Egorov, M. D., Sapozhnikov, Y. L., & Shakhnazarov, Y. V. (1989). Effect of carbon content on the structure, hardness, and thermal stability of boron-chromium cast steels. Metal Science and Heat Treatment, 31(5), 387-391.
- 9. Fu, H. G., Xing, J. D., Lei, Y. P., & Huang, L. M. (2011). A Study on the Wear Behavior of Cast Boron Steel. Journal of materials engineering and performance, 20(9), 1665-1670.
- 10. Fu, H. G., Wu, Z. W., & Xing, J. D. (2007). Investigation of quenching effect on mechanical property and abrasive wear behaviour of high boron cast steel. materials science and Technology, 23(4), 460-465.
- 11. Fu, H. G., Fu, D. M., & Xing, J. D. (2008). Investigations on the cast boron steel guide roller and its application in steel wire-rod mill. Materials and Manufacturing Processes, 23(2), 123-129.
- 12. Röttger, A., Lentz, J., & Theisen, W. (2015). Boron-alloyed Fe–Cr–C–B tool steels—Thermodynamic calculations and experimental validation. Materials & Design, 88, 420-429.
- 13. Lentz, J., Röttger, A., & Theisen, W. (2015). Solidification and phase formation of alloys in the hypoeutectic region of the Fe–C–B system. Acta Materialia, 99, 119-129.
- 14. Standard, A. S. T. M. (2012). E407-07: Standard Practice for Microetching Metals and Alloys. ASTM International., West Conshohocken, PA.
- 15. Standard, A. ASTM E 1245-03: Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis. Annual Book of ASTM Standards, 3, 1-8.
- 16. Zhang, J., Gao, Y., Xing, J., Ma, S., Yi, D., & Yan, J. (2011). Effects of chromium addition on microstructure and abrasion resistance of Fe–B cast alloy. Tribology Letters, 44(1), 31.
- 17. Zhang, J., Gao, Y., Xing, J., Ma, S., Yi, D., Liu, L., & Yan, J. (2011). Effects of plastic deformation and heat treatment on microstructure and properties of high boron cast steel. Journal of materials Engineering and Performance, 20(9), 1658-1664.
- 18. Zhang, H., Fu, H., Jiang, Y., Guo, H., Lei, Y., Zhou, R., & Cen, Q. (2011). Effect of boron concentration on the solidification microstructure and properties of Fe‐Cr‐B alloy. Materialwissenschaft und Werkstofftechnik, 42(8), 765-770.
- 19. Zhuang, M., Li, M., Wang, J., Ma, Z., & Yuan, S. (2017). Study on Composition, Microstructure and Wear Behavior of Fe-BC Wear-Resistant Surfacing Alloys. Journal of Materials Engineering and Performance, 26(12), 6182-6192.
- 20. Ma, S., Xing, J., Liu, G., Yi, D., Fu, H., Zhang, J., ve Li, Y. (2010). Effect of chromium concentration on microstructure and properties of Fe–3.5 B alloy. Materials Science and Engineering: A, 527(26), 6800-6808.
- 21. Guo, C., ve Kelly, P. M. (2003). Boron solubility in Fe–Cr–B cast irons. Materials Science and Engineering: A, 352(1), 40-45.
- 22. Ma, S., & Zhang, J. (2016). Wear resistant high boron cast alloy-a review. Rev. Adv. Mater. Sci, 44, 54-62.
- 23. Banerji, S. K., ve Morral, J. E. (1979). Boron in Steel. Milwaukee, Wis, 18 Sept. 1979, 1980.
Year 2020,
Volume: 5 Issue: 2, 108 - 114, 29.06.2020
Ömer Faruk Murathan
,
Kadir Kocatepe
,
Mehmet Erdoğan
Project Number
07/2018-06
References
- 1. Krauss, G. (2015). Steels: processing, structure, and performance. Asm International.
- 2. Bhadeshia, H., & Honeycombe, R. (2017). Steels: microstructure and properties. Butterworth-Heinemann.
- 3. Banerji, S. K., ve Morral, J. E. (1979). Boron in Steel. Milwaukee, Wis, 18 Sept. 1979, 1980.
- 4. Davis, J. R., Mills, K. M., & Lampman, S. R. (1990). Metals handbook. Vol. 1. Properties and selection: Irons, steels, and high-performance alloys. ASM International, Materials Park, Ohio 44073, USA, 1990. 1063.
- 5. Llewellyn, D. T., & Cook, W. T. (1974). Metallurgy of boron-treated low-alloy steels. Metals Technology, 1(1), 517-529.
- 6. Hwang, B., Suh, D. W., & Kim, S. J. (2011). Austenitizing temperature and hardenability of low-carbon boron steels. Scripta Materialia, 64(12), 1118-1120.
- 7. Suri, A. K., Subramanian, C., Sonber, J. K., & Murthy, T. C. (2010). Synthesis and consolidation of boron carbide: a review. International Materials Reviews, 55(1), 4-40.
- 8. Egorov, M. D., Sapozhnikov, Y. L., & Shakhnazarov, Y. V. (1989). Effect of carbon content on the structure, hardness, and thermal stability of boron-chromium cast steels. Metal Science and Heat Treatment, 31(5), 387-391.
- 9. Fu, H. G., Xing, J. D., Lei, Y. P., & Huang, L. M. (2011). A Study on the Wear Behavior of Cast Boron Steel. Journal of materials engineering and performance, 20(9), 1665-1670.
- 10. Fu, H. G., Wu, Z. W., & Xing, J. D. (2007). Investigation of quenching effect on mechanical property and abrasive wear behaviour of high boron cast steel. materials science and Technology, 23(4), 460-465.
- 11. Fu, H. G., Fu, D. M., & Xing, J. D. (2008). Investigations on the cast boron steel guide roller and its application in steel wire-rod mill. Materials and Manufacturing Processes, 23(2), 123-129.
- 12. Röttger, A., Lentz, J., & Theisen, W. (2015). Boron-alloyed Fe–Cr–C–B tool steels—Thermodynamic calculations and experimental validation. Materials & Design, 88, 420-429.
- 13. Lentz, J., Röttger, A., & Theisen, W. (2015). Solidification and phase formation of alloys in the hypoeutectic region of the Fe–C–B system. Acta Materialia, 99, 119-129.
- 14. Standard, A. S. T. M. (2012). E407-07: Standard Practice for Microetching Metals and Alloys. ASTM International., West Conshohocken, PA.
- 15. Standard, A. ASTM E 1245-03: Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis. Annual Book of ASTM Standards, 3, 1-8.
- 16. Zhang, J., Gao, Y., Xing, J., Ma, S., Yi, D., & Yan, J. (2011). Effects of chromium addition on microstructure and abrasion resistance of Fe–B cast alloy. Tribology Letters, 44(1), 31.
- 17. Zhang, J., Gao, Y., Xing, J., Ma, S., Yi, D., Liu, L., & Yan, J. (2011). Effects of plastic deformation and heat treatment on microstructure and properties of high boron cast steel. Journal of materials Engineering and Performance, 20(9), 1658-1664.
- 18. Zhang, H., Fu, H., Jiang, Y., Guo, H., Lei, Y., Zhou, R., & Cen, Q. (2011). Effect of boron concentration on the solidification microstructure and properties of Fe‐Cr‐B alloy. Materialwissenschaft und Werkstofftechnik, 42(8), 765-770.
- 19. Zhuang, M., Li, M., Wang, J., Ma, Z., & Yuan, S. (2017). Study on Composition, Microstructure and Wear Behavior of Fe-BC Wear-Resistant Surfacing Alloys. Journal of Materials Engineering and Performance, 26(12), 6182-6192.
- 20. Ma, S., Xing, J., Liu, G., Yi, D., Fu, H., Zhang, J., ve Li, Y. (2010). Effect of chromium concentration on microstructure and properties of Fe–3.5 B alloy. Materials Science and Engineering: A, 527(26), 6800-6808.
- 21. Guo, C., ve Kelly, P. M. (2003). Boron solubility in Fe–Cr–B cast irons. Materials Science and Engineering: A, 352(1), 40-45.
- 22. Ma, S., & Zhang, J. (2016). Wear resistant high boron cast alloy-a review. Rev. Adv. Mater. Sci, 44, 54-62.
- 23. Banerji, S. K., ve Morral, J. E. (1979). Boron in Steel. Milwaukee, Wis, 18 Sept. 1979, 1980.