Research Article
BibTex RIS Cite

In vitro biological activities of potassium metaborate; antioxidative, antimicrobial and antibiofilm properties

Year 2022, Volume: 7 Issue: 2, 475 - 481, 30.06.2022
https://doi.org/10.30728/boron.1076636

Abstract

Antioxidant, antimicrobial and antibiofilm activities of potassium metaborate (KBO2) was investigated within the present study. Antioxidant capacity of potassium metaborate was determined by β-carotene bleaching (BCB) assay and hydroxyl radical scavenging activity. Potassium metaborate was evaluated for its antimicrobial effects against selected Gram-positive bacteria, Gram-negative bacteria and a yeast via broth dilution method. The inhibition capability of potassium metaborate on the microbial biofilm formation of tested microorganisms was measured by microplate biofilm method using MTT (3- [4, 5- dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium-bromide). Biofilm inhibition capacity of potassium metaborate was also observed by Scanning Electron Microscope (SEM). Potassium metaborate was found to have the ability to scavenge hydroxyl radicals with an inhibition rate of 71.13% at 100 mM concentration. Antioxidant activity of potassium metaborate as determined by BCB assay gave higher result with an inhibition rate of 86.96% at the same concentration. According to the MIC (minimum inhibition concentration) values, the potassium metaborate inhibited the growth of C. albicans, S. aureus and E. coli at 62.5 mM concentrations while it was 31.25 mM for B. subtilis and 125 mM for P. aeruginosa. The highest antibiofilm activity was determined at the MIC of potassium metaborate with the reduction rate of 90.18% against C. albicans. It was concluded that, potassium metaborate have strong biological activities and can be effectively used for biomedical and environmental solutions.

Thanks

This study was presented at the “Symposium on Euroasian Biodiversity, May 23-26, 2016, Antalya, TURKEY” as an oral presentation.

References

  • [1] Ciani, L., & Ristori, S. (2012). Boron as a platform for new drug design. Expert Opinion on Drug Discovery. 7(11), 1017-1027.
  • [2] Anovitz, L.M., & Grew, E.S. (1996). An introduction In Mineralogy, Petrology and Geochemistry of Boron.” Reviews in Mineralogy and Geochemistry, 33(1), 1-40.
  • [3] Shah, F.U., Glavatskih, S., and Antzutkin, O.N. (2013). Boron in Tribology: From Borates to Ionic Liquids, Tribology Letters, 51, 281–301.
  • [4] Nielsen, F.H. (1988). Boron- an overlooked element of potential nutritional importance, Nutrition Today, 23(1), 4–7.
  • [5] Devirian, T. A., and Volpe, S. L. (2003). The physiological effects of dietary boron, Critical Reviews in Food Science and Nutrition, 43(2), 219-231.
  • [6] Yenmez, N. (2009). Stratejik bir maden olarak bor minerallerin Türkiye için önemi, Coğrafya Dergisi 19, 59-94.
  • [7] Zhang, C. H., Yu, Y., Liang, Y. Z., Chen, X. Q. (2015). Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis, International Journal of Biolological Macromolecules, 79, 681-686.
  • [8] Rauter, A. P., Dias, C., Martins, A., Branco, I., Neng, N. R., Nogueira, J. M. and Waltho, J. P. (2012). Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties, Food Chemistry, 132(4), 1930-1935.
  • [9] Clinical and Laboratory Standards Institute (CLSI) (2006). Performance standards for antimicrobial susceptibility testing, Sixteenth Informational Supplement. Document M100-S16, Wayne, PA.
  • [10] Walencka, E., Sadowska, B., Rozalska, S., Hryniewicz, W., Rózalska, B. (2005). Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication, Polish Journal of Microbiology, 54(3), 191-200.
  • [11] Baygar, T., Ugur, A., Sarac, N., Balci, U., and Ergun, G. (2018). Functional denture soft liner with antimicrobial and antibiofilm properties, Journal of Dental Sciences, 13(3), 213-219.
  • [12] Baker, J., Ding, Z.C., Zhang, Y.K., Hernandez, V., and Xia, Y. (2009). Therapeutic potential of boron-containing compounds, Future Medicinal Chemistry, 1(7), 1275–1288.
  • [13] Barth, R. F., Coderre, J. A., Vicente, M. G. H., and Blue, T. E. (2005). Boron neutron capture therapy of cancer: current status and future prospects, Clinical Cancer Research, 11(11), 3987-4002.
  • [14] Henriksson, R., Capala, J., Michanek, A., Lindahl, S. Å., Salford, L. G., Franzén, L., and Bergenheim, A. T. (2008). Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA), Radiotherapy and Oncology, 88(2), 183-191.
  • [15] Yılmaz, M. T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains, Turkish Journal of Medical Sciences, 42(Sup. 2), 1423-1429.
  • [16] Sayın, Z., Ucan, U. S., and Sakmanoglu, A. (2016). Antibacterial and antibiofilm effects of boron on different bacteria, Biological Trace Element Research, 173(1), 241-246.
  • [17] Argin, S., Gülerim, M., and Şahin, F. (2019). Development of antimicrobial gelatin films with boron derivatives, Turkish Journal of Biology, 43(1), 47-57.
  • [18] Dembitsky, V. M. and Srebnik, M. (2003). Synthesis and Biological Activity of R-Aminoboronic Acids. Amine-Carboxyboranes and Their Derivatives, Tetrahedron, 59(5), 579-593.
  • [19] Baldock, C., de Boer, G.J., Rafferty, J. B., Stuitje, A. R., & Rice, D. W. (1998). Mechanism of Action of Diazaborines, Biochemical Pharmacology, 55(10), 1541-1549.
  • [20] Surolia, N., RamachandraRao, S. P., and Surolia, A. (2002). Paradigm Shifts in Malaria Parasite Biochemistry and Anti-Malarial Chemotherapy, BioEssays 24, 192-196.
  • [21] Jabbour, A., Steinberg, D., Dembitsky, V. M., Moussaieff, A., Zaks, B., and Srebnik, M. (2004). Synthesis and evaluation of oxazaborolidines for antibacterial activity against Streptococcus mutans, Journal of Medicinal Chemistry, 47(10), 2409-2410.
  • [22] Sánchez-Gómez, S., Ferrer-Espada, R., Stewart, P. S., Pitts, B., Lohner, K., and de Tejada, G. M. (2015). Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms, BMC microbiology, 15(1), 137.
  • [23] Mah, T.F., and O’Toole, G.A. (2001). Mechanisms of biofilm resistance to antimicrobial agents, Trends in Microbiology, 9(1), 34–39.
  • [24] Mansour, T.S., Bradford, P.A., and Venkatesan, A.M. (2008). Recent developments in β-lactamases and inhibitors, Annual Reports in Medicinal Chemistry, 43, 247–267.
  • [25] Hernandez, V., Crepin, T., Palencia, A., Cusack, S., Akama, T., Baker, S.J., Bu, W., et al. (2013). Discovery of a novel class of boron-based antibacterials with activity against Gram-negative bacteria, Antimicrobial Agents and Chemotherapy, 57(3), 1394–1403.
  • [26] De Seta, F., Schmidt, M., Vu, B., Essmann, M., and Larsen, B. (2009). Antifungal mechanisms supporting boric acid therapy of Candida vaginitis, Journal of Antimicrobial Chemotherapy, 63(2), 325-336.
  • [27] Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., and Pelczer, I. (2002). Structural identification of a bacterial quorum-sensing signal containing boron, Nature, 415, 545–549.
  • [28] Lowery, C.A., Salzameda, N.T., Sawada, D., Kaufmann, G.F., and Janda, K.D. (2010). Medicinal chemistry as a conduit for the modulation of quorum sensing, Journal of Medicinal Chemistry, 53(21), 7467–7489.
  • [29] Benkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y. H., Zhang, Y. K., Akama, T., and Kahng, L. S. (2005). Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH, Journal of Medicinal Chemistry, 48(23), 7468-7476.

Potasyum metaborat'a ait in vitro biyolojik aktiviteler; antioksidant, antimikrobiyal ve antibiyofilm özellikleri

Year 2022, Volume: 7 Issue: 2, 475 - 481, 30.06.2022
https://doi.org/10.30728/boron.1076636

Abstract

Bu çalışmada potasyum metaboratın (KBO2) antioksidan, antimikrobiyal ve antibiyofilm aktiviteleri incelenmiştir. Potasyum metaboratın antioksidan aktivitesi beta-karoten ağartma (BCB) analizi ve hidroksil radikal giderim aktivitesi olarak belirlenmiştir. Potasyum metaboratın antimikrobial aktivitesi, seçili Gram-pozitif bakteri, Gram-negatif bakteri ve maya suşlarına karşı tüp dilüsyon metodu ile incelenmiştir. Potasyum metaboratın test edilen mikroorganizmaların biyofilm oluşturma özelliği üzerine etkinliği MTT (3- [4, 5- dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium-bromide) testi ile belirlenmiştir. Biyofilm inhibisyon kapasitesi ayrıca Taramalı Elektron Mikroskobu (SEM) ile görüntülenmiştir. Potasyum metaboratın hidroksil radikallerini giderim kapasitesi 100 mM konsantrasyonda % 71.13 olarak hesaplanmıştır. Aynı konsatrasyonda BCB aktivitesi daha yüksek sonuç vererek % 86.96 olrak belirlenmiştir. Minimum İnhibisyon Konsantrasyonu (MİK) hesaplamalarına göre potasyum metaborat 62.5 mM konsantrasyonda C. albicans, S. aureus ve E. coli üremesini inhibe ederken, 31.25 mM konsatrasyonda B. subtilis, 125 mM konsantrasyonda ise P. aeruginosa üremesini inhibe etmiştir. MİK değeri uygulanan antibiyofilm aktivite analizi sonucuna göre en yüksek aktivite % 90.18 biyofilm inhibisyon değeri ile C. albicans’ a karşı görülmüştür. Sonuç olarak potasyum metaboratın güçlü biyolojik aktivitelere sahip olduğu ve biyomedikal ve çevresel çözümlerde etkili bir şekilde kullanılabileceği görülmüştür.

References

  • [1] Ciani, L., & Ristori, S. (2012). Boron as a platform for new drug design. Expert Opinion on Drug Discovery. 7(11), 1017-1027.
  • [2] Anovitz, L.M., & Grew, E.S. (1996). An introduction In Mineralogy, Petrology and Geochemistry of Boron.” Reviews in Mineralogy and Geochemistry, 33(1), 1-40.
  • [3] Shah, F.U., Glavatskih, S., and Antzutkin, O.N. (2013). Boron in Tribology: From Borates to Ionic Liquids, Tribology Letters, 51, 281–301.
  • [4] Nielsen, F.H. (1988). Boron- an overlooked element of potential nutritional importance, Nutrition Today, 23(1), 4–7.
  • [5] Devirian, T. A., and Volpe, S. L. (2003). The physiological effects of dietary boron, Critical Reviews in Food Science and Nutrition, 43(2), 219-231.
  • [6] Yenmez, N. (2009). Stratejik bir maden olarak bor minerallerin Türkiye için önemi, Coğrafya Dergisi 19, 59-94.
  • [7] Zhang, C. H., Yu, Y., Liang, Y. Z., Chen, X. Q. (2015). Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis, International Journal of Biolological Macromolecules, 79, 681-686.
  • [8] Rauter, A. P., Dias, C., Martins, A., Branco, I., Neng, N. R., Nogueira, J. M. and Waltho, J. P. (2012). Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties, Food Chemistry, 132(4), 1930-1935.
  • [9] Clinical and Laboratory Standards Institute (CLSI) (2006). Performance standards for antimicrobial susceptibility testing, Sixteenth Informational Supplement. Document M100-S16, Wayne, PA.
  • [10] Walencka, E., Sadowska, B., Rozalska, S., Hryniewicz, W., Rózalska, B. (2005). Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication, Polish Journal of Microbiology, 54(3), 191-200.
  • [11] Baygar, T., Ugur, A., Sarac, N., Balci, U., and Ergun, G. (2018). Functional denture soft liner with antimicrobial and antibiofilm properties, Journal of Dental Sciences, 13(3), 213-219.
  • [12] Baker, J., Ding, Z.C., Zhang, Y.K., Hernandez, V., and Xia, Y. (2009). Therapeutic potential of boron-containing compounds, Future Medicinal Chemistry, 1(7), 1275–1288.
  • [13] Barth, R. F., Coderre, J. A., Vicente, M. G. H., and Blue, T. E. (2005). Boron neutron capture therapy of cancer: current status and future prospects, Clinical Cancer Research, 11(11), 3987-4002.
  • [14] Henriksson, R., Capala, J., Michanek, A., Lindahl, S. Å., Salford, L. G., Franzén, L., and Bergenheim, A. T. (2008). Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA), Radiotherapy and Oncology, 88(2), 183-191.
  • [15] Yılmaz, M. T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains, Turkish Journal of Medical Sciences, 42(Sup. 2), 1423-1429.
  • [16] Sayın, Z., Ucan, U. S., and Sakmanoglu, A. (2016). Antibacterial and antibiofilm effects of boron on different bacteria, Biological Trace Element Research, 173(1), 241-246.
  • [17] Argin, S., Gülerim, M., and Şahin, F. (2019). Development of antimicrobial gelatin films with boron derivatives, Turkish Journal of Biology, 43(1), 47-57.
  • [18] Dembitsky, V. M. and Srebnik, M. (2003). Synthesis and Biological Activity of R-Aminoboronic Acids. Amine-Carboxyboranes and Their Derivatives, Tetrahedron, 59(5), 579-593.
  • [19] Baldock, C., de Boer, G.J., Rafferty, J. B., Stuitje, A. R., & Rice, D. W. (1998). Mechanism of Action of Diazaborines, Biochemical Pharmacology, 55(10), 1541-1549.
  • [20] Surolia, N., RamachandraRao, S. P., and Surolia, A. (2002). Paradigm Shifts in Malaria Parasite Biochemistry and Anti-Malarial Chemotherapy, BioEssays 24, 192-196.
  • [21] Jabbour, A., Steinberg, D., Dembitsky, V. M., Moussaieff, A., Zaks, B., and Srebnik, M. (2004). Synthesis and evaluation of oxazaborolidines for antibacterial activity against Streptococcus mutans, Journal of Medicinal Chemistry, 47(10), 2409-2410.
  • [22] Sánchez-Gómez, S., Ferrer-Espada, R., Stewart, P. S., Pitts, B., Lohner, K., and de Tejada, G. M. (2015). Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms, BMC microbiology, 15(1), 137.
  • [23] Mah, T.F., and O’Toole, G.A. (2001). Mechanisms of biofilm resistance to antimicrobial agents, Trends in Microbiology, 9(1), 34–39.
  • [24] Mansour, T.S., Bradford, P.A., and Venkatesan, A.M. (2008). Recent developments in β-lactamases and inhibitors, Annual Reports in Medicinal Chemistry, 43, 247–267.
  • [25] Hernandez, V., Crepin, T., Palencia, A., Cusack, S., Akama, T., Baker, S.J., Bu, W., et al. (2013). Discovery of a novel class of boron-based antibacterials with activity against Gram-negative bacteria, Antimicrobial Agents and Chemotherapy, 57(3), 1394–1403.
  • [26] De Seta, F., Schmidt, M., Vu, B., Essmann, M., and Larsen, B. (2009). Antifungal mechanisms supporting boric acid therapy of Candida vaginitis, Journal of Antimicrobial Chemotherapy, 63(2), 325-336.
  • [27] Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., and Pelczer, I. (2002). Structural identification of a bacterial quorum-sensing signal containing boron, Nature, 415, 545–549.
  • [28] Lowery, C.A., Salzameda, N.T., Sawada, D., Kaufmann, G.F., and Janda, K.D. (2010). Medicinal chemistry as a conduit for the modulation of quorum sensing, Journal of Medicinal Chemistry, 53(21), 7467–7489.
  • [29] Benkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y. H., Zhang, Y. K., Akama, T., and Kahng, L. S. (2005). Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH, Journal of Medicinal Chemistry, 48(23), 7468-7476.
There are 29 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Tuba Baygar 0000-0002-1238-3227

Nurdan Saraç 0000-0001-7676-542X

Özgür Ceylan 0000-0002-1865-1093

Aysel Uğur 0000-0002-5188-1106

Rukiye Boran 0000-0003-2395-2445

Uydu Balcı This is me 0000-0003-4128-2772

Publication Date June 30, 2022
Acceptance Date April 30, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

APA Baygar, T., Saraç, N., Ceylan, Ö., Uğur, A., et al. (2022). In vitro biological activities of potassium metaborate; antioxidative, antimicrobial and antibiofilm properties. Journal of Boron, 7(2), 475-481. https://doi.org/10.30728/boron.1076636