Review
BibTex RIS Cite

Enterobacteriaceae Suşlarında Genişlemiş Spektrumlu Beta-laktamaz ile Karbapenem ve Kolistin Direnci

Year 2022, Volume: 3 Issue: 1, 12 - 19, 30.06.2022

Abstract

Son yıllarda antibiyotik dirençliliği insan ve hayvan sağlığını tehdit eden önemli bir risk halini almaktadır. Özellikle çoklu antibiyotik dirençlilik durumu araştırmacılar tarafından sıklıkla bildirilmektedir. Antibiyotik dirençliliği konusundaki önemli bir başlık Genişlemiş Spektrumlu Beta-laktamazlar olup, GSBL grubu çoklu antibiyotik direnci gösteren mikroorganizmalardan oluşmaktadır. GSBL pozitif bakteriler hayvanlarda da mevcut olup gıda aracılığıyla insanları enfekte edebilmektedir. Bu nedenle GSBL konusu hem beşeri tıp hem de veteriner tıbbının ortak konusudur. GSBL bilim dünyası tarafından yakından takip edilmekte ve halen GSBL’nin sınıflandırılması ve tür analiz çalışmaları devam etmektedir. Nitekim, Dünya Sağlık Örgütü çoklu antibiyotik direnç geliştiren mikroorganizmaların düzenli takip edilmesini önermekte olup, GSBL tarama ve doğrulama yöntemleri çeşitli analizler ile yapılabilmektedir. Karbapenem içeren antibiyotikler beşeri hekimlikte kullanılan önemli bir grup olarak bildirilmekte olup, GSBL pozitif bakterilere karşı kullanılan karbapenem grubu antibiyotiklere olan direnç günden güne artış göstermektedir. Bununla birlikte, GSBL’ye karşı kullanılan karbapenem grubundaki antibiyotik direnci özellikle yoğun bakımdaki hastalarda hayati tehlikeye neden olmaktadır. Son çare antibiyotiği olarak bilinen ve kombine bir şekilde kullanılan kolistin, bu gelişmeler ile tekrardan bilim dünyasında ilgi odağı olmaktadır. Bu çalışmanın amacı, ESBL, karbapenem ve kolistin antibiyotik grupları ve bu antibiyotik gruplarına karşı gelişen direncin önemini ortaya koymaktır.

Supporting Institution

Yoktur.

References

  • 1. Topçu AW, Söyletir G, Doganay M. Enfeksiyon Hastalıkları ve Mikrobiyolojisi. Nobel Tıp Kitabevleri, İstanbul, 2008; 3: 2126-2135.
  • 2. Ofer-Friedman H, Shefler C, Sharma S, Tirosh A, Tal-Jasper R, et al. Carbapenems Versus PiperacillinTazobactam for Bloodstream Infections of Nonurinary Source Caused by Extended- Spectrum Beta-Lactamase– Producing Enterobacteriaceae. Infection Control Hospital Epidemiology 2015; 36: 981-5. doi: 10.1017/ice.2015.101.
  • 3. Newly Reported Gene, mcr-1, Threatens Last-Resort Antibiotics. CDC 2016, https://www.cdc.gov/drugresistance/solutions-initiative/stories/gene-reported-mcr.html#:~:text=The%20gene%20has%20the%20potential,because%20of%20its%20side%20effects, Erişim: 10. 2. 2022.
  • 4. Murray RP, Rosenthal KS, Pfaller AM. Enterobacteriaceae in Bacteriology. Medical Microbiology 2009; 25: 257-270.
  • 5. Centers for Disease Control and Prevention (CDC), Laboratory protocol for detection of carbapenem-resistant or carbapenemase producing, Klebsiella spp. and E. coli from rectal swabs, http://www.cdc.gov/hai/pdfs/labsettings/ klebsiella_or_ecoli.pdf. 2011.
  • 6. Health Protection Agency (HPA), Advice on carbapenemase producers: recognition, infection control and treatment. www.hpa.org.uk; 2011.
  • 7. European Committee on Antimicrobial Susceptibility Testing (EUCAST), EUCAST breakpoint tables for interpretation of MICs and zone diameters 2011.
  • 8. Ustaçelebi Ş. Temel ve Klinik Mikrobiyoloji. Güneş Kitapevi, Ankara, 1999; 509-511.
  • 9. Lukac PJ, Bonomo RA, Logan LK. Extended-Spectrum -LactamaseProducing Enterobacteriaceae in Children: Old Foe, Emerging Threat. Clinical Infectious Diseases 2015; 60: 1389–1397. doi.org/10.1093/cid/civ020.
  • 10. Forster CS, Courter J, Jackson EC, Mortensen JE, Haslam DB, Frequency of Multidrug-Resistant Organisms Cultured From Urine of Children Undergoing Clean Intermittent Catheterization. J Pediatric Infectious Diseases Society 2016; 6: 20. doi.org/10.1093/jpids/piw056.
  • 11. Murray BE, Anderson K, Arnold K, Barlett J, Carpenter C, Erratum. Clinical Infectious Diseases 2005; 41: 279. doi.org/10.1086/430468.
  • 12. Gür D. Beta-laktamazlar. Flora Dergisi 1997; 2: 3-18.
  • 13. Pitout JDD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriacea: an emerging public health concern. The Lancet Infectious Diseases 2008; 8: 159-166. doi: 10.1016/S1473-3099(08)70041-0.
  • 14. Ramphal R, Ambrose GP. Extended-Spectrum β-Lactamases and Clinical Outcomes: Current Data, Clinical Infectious Diseases, 2006; 42: 164–172, https://doi.org/10.1086/500663.
  • 15. Cantón R, Novais A, Valverde A, Machado E, Peixe L, et al. Prevalence and spread of extended-spectrum b-lactamase-producing Enterobacteriaceae in Europe. Clinical Microbiology and Infection 2008; 14: 144–153. doi.org/10.1111/j.1469-0691.2007.01850.x.
  • 16. Brolundab A, Edquista PJ, Mäkitaloa B, Olsson-Liljequista B, Söderbloma T, et al. Epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in Sweden 2007–2011. Clinical Microbiology and Infection 2014; 20: 344-352. doi: 10.1111/1469-0691.12413.
  • 17. Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clinical Microbiology and Infection 2000; 6: 460-463. doi:10.1046/j.1469-0691.2000.00107.x.
  • 18. Harada S, Ishii Y, Yamaguchi K. Extended-spectrum β-lactamases: Implications for the clinical laboratory and therapy. Korean Journal of Laboraty Medicine 2008; 28: 401-412. doi: 10.3343/kjlm.2008.28.6.401.
  • 19. Bush K, Jacoby AG. Updated functional classification of β–Lactamases. Antimicrobial Agents and Chemotherapy 2010; 969–976. doi: 10.1128/AAC.01009-09.
  • 20. Tolun V, Küçükbasmacı O, Törümküney-Akbulut D, Catal C, Anğ-Küçüker M, Anğ O. Relationship between ciprofl oxacin resistance and extended-spectrum beta-lactamase production in Escherichia coli and Klebsiella pneumoniae strains. Clinical Microbiology and Infection 2004; 10: 72-75. doi: 10.1111/j.1469-0691.2004.00723.x.
  • 21. Canton R, Coque TM. The CTX-M β-lactamase pandemic. Current Opinion In Microbiology 2006; 9: 466-475. doi: 10.1016/j.mib.2006.08.011.
  • 22. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a Clinical Update. Clinical Microbiology Reviews 2005; 18: 657-686. doi: 10.1128/CMR.18.4.657-686.2005.
  • 23. Stürenburg E, Mack D. Extended spektrum beta lactamases: Implications for the clinical microbiology laboratory, therapy and infection control. Journal of Infection 2003; 47: 279-295. doi: 10.1016/s0163-4453(03)00096-3.
  • 24. Gür D. ESBL’ların Genel Özellikleri ve ESBL Tipleri. Yeni ve Yeniden Gündeme Gelen İnfeksiyonlar, Bilimsel Tıp Yayınevi, Ankara, 2004.
  • 25. Canton R, Morosini MI, Martin O, Maza S. IRT and CMT beta lactamases and inhibtor resistance. Clinical Microbiology and Infection 2008; 14: 53-62 doi.org/10.1111/j.1469-0691.2007.01849.x.
  • 26. Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 1995; 8: 557-84. doi: 10.1128/CMR.8.4.557.
  • 27. Jacoby G, Bush K. Lahey clinic page on amino acid sequence for TEM, SHV and OXA extended spectrum and inhibitor resistant beta-lactamases. http://www.lahey.org/Studies.
  • 28. Nordman P, Ronco E, Naas T, Duport C, MichelBriand Y, Labia R. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1993; 37: 962–969. doi: 10.1128/AAC.37.5.962.
  • 29. Nordmann P, Naas T. Sequence analysis of PER-1 extended spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrobial Agents and Chemotherapy 1994; 38: 104-114. doi: 10.1128/AAC.38.1.104.
  • 30. Poirl L, Naas T, Guibert M, Chaibi B, Labia R, Nordmann P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an E. coli integron gene. Antimicrobial Agents and Chemotherapy 1999; 43: 573-581. doi.org/10.1128/AAC.43.3.573.
  • 31. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clinical Microbiology and Infection 2002; 8: 321–331. doi.org/10.1046/j.1469-0691.2002.00401.x.
  • 32. Clinical and Laboratory Standarts Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-first informational Supplement, 2011; 144-147.
  • 33. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance, 2017.
  • 34. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clinical Microbiology Reviews 2005; 18: 657-86. doi.org/10.1128/CMR.18.4.657-686.2005.
  • 35. Biendenbach DJ, Toleman M, Walsh TR, Jones RN. Analysis of Salmonella spp. with resistance to extended-spectrum cephalosporins and fluoroquinolones Antimicrobial Surveillance Program (1997- 2004), Diagnostic Microbiology and Infection Disease 2006; 54: 13-21.
  • 36. Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clinical Microbiology and Infection 2008; 14: 90-103. doi.org/10.1111/j.1469-0691.2007.01846.x.
  • 37. Platteel TN, Cohen Stuart JW, de Neeling AJ, Vorts GM, Scharringa J et al. Multi-centre evaluation of a phenotypic extended spectrum β-lactamase detection guideline in the routine setting. Clinical Microbiology and Infection 2013; 19: 70-76. doi.org/10.1111/j.1469-0691.2011.03739.x.
  • 38. Wiegand I, Geiss HK, Mack D, Stürenburg E, Seifert H. Detection of extended-spectrum beta-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures. Journal of Clinical Microbiology 2007; 45: 1167- 1174. doi.org/10.1128/JCM.01988-06.
  • 39. Sanguinetti M, Posteraro B, Spanu T, Ciccaglione D, Romano L, Fiori B. Characterization of clinical isolates of Enterobacteriaceae from Italy by the BD Phoenix extended-spectrum beta-lactamase detection method. Journal of Clinical Microbiology 2003; 41: 1463-1468. doi: 10.1128/JCM.41.4.1463-1468.2003.
  • 40. Randall LP, Kirchner M, Teale CJ, Coldham NG, Liebana E, et al. Evaluation of CHROMagar CTX, a novel medium for isolating CTX-M-ESBL positive Enterobacteriaceae while inhibiting AmpC- producing strains. Journal of Antimicrobial Chemotherapy 2009; 63: 302-308. doi.org/10.1093/jac/dkn485.
  • 41. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews 2001; 14: 933-951. doi.org/10.1128/CMR.14.4.933-951.2001.
  • 42. Yohei D Ertapenem, Imipenem, Meropenem, Doripenem, and Aztreonam. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 2015; 22: 285-290.
  • 43. Patel G, Bonomo AR “Stormy waters ahead”: global emergence of carbapenemases. Frontier in Microbiology 2013. doi: 10.3389/fmicb.2013.00048.
  • 44. Cantón, R, Carmeli Y, Giske G, Nass T, Miriagou V. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clinical Microbiology and Infection 2012; 18: 413-431, doi.org/10.1111/j.1469-0691.2012.03821.x.
  • 45. Kumarasamy KK, Toleman AM, Walsh RT, Bagaia J, Butt F et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet İnfection Diseases 2010; 10: 597-602. doi.org/10.1016/S1473-3099(10)70143-2.
  • 46. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. The Journal of Infectious Diseases 2017; 215: 28-36. doi.org/10.1093/infdis/jiw282.
  • 47. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Identification and screening of carbapenemase-producing Enterobacteriaceae. Clinical Microbiology and Infections 2012; 18: 432-438 doi: 10.1111/j.1469-0691.2012.03815.x.
  • 48. Avlami A, Bekris S, Ganteris G, Kraniotaki E, Paniara O, et al. Detection of metallo-beta-lactamase genes in clinical specimens by a commercial multiplex PCR system. Journal of Microbiological Methods 2010; 83: 185-187. doi.org/10.1016/j.mimet.2010.08.014
  • 49. Poirel L, Walsh RT, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease 2011; 70: 119-23. doi.org/10.1016/j.diagmicrobio.2010.12.002.
  • 50. Ustaçelebi Ş. Temel ve Klinik Mikrobiyoloji. Güneş Kitapevi, Ankara, 1999; 509-513.
  • 51. Bilgehan H. Klinik Mikrobiyolojik Tanı. Fakülteler Kitapevi, İzmir, 2009; 428-29.
  • 52. Boisson M, Gregoire N, Couet W, Mimoz O. Colistin in critically ill patients. Minerva Anestesiol 2013; 79: 200-208.
  • 53. Akalın H. Kolistin. Ankem 2007; 21: 26-28.
  • 54. World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine, 3rd edn. Geneva, Switzerland: World Health Organization (WHO), 2012.
  • 55. Lenhard JR, Bulman ZP, Tsuji BT, Kaye KS. Shifting gears: the future of polymyxin antibiotics. Antibiotics, Basel, 2019; 8: 42. doi.org/10.3390/antibiotics8020042.
  • 56. Giske CG, Kahlmeter G. Colistin Antimicrobial Susceptibility Testing—Can the Slow and Challenging Be Replaced by the Rapid and Convenient?. Clinical Microbiology and Infection 2018; 24: 93-94. doi.org/10.1016/j.cmi.2017.10.007.
  • 57. Stürenburg E, Sobottka I, Noor D, Laufs R, Mack D. Evulation of a new cefepime-clavulanate ESBL Etest to detect extended-spectrum β-lactamases in a Enterobacteriaceae starin cellection. Journal of Antimicrobial Chemotherapy 2004; 54: 134-138. doi.org/10.1093/jac/dkh274.
  • 58. Hindler JA, Humphries RM. Colistin MicVariability by Method for Contemporary Clinical Isolates of Multidrug-Resistant Gram-Negative Bacilli. Journal of Clinical Microbiology 2013; 51: 1678-1684. doi.org/10.1128/JCM.03385-12.
  • 59. Baron EJ, Peterson LR, Finegold SM. Enterobacteriaceae, Bailey & Scott’s Diagnostic Microbiology, Baltimore, Mosby Year Book, 1994; 362-387.
  • 60. Leclercq R, Canton R, Brown JDF, Giske GC, Heisig P, MacGowan PA, et al. Eucast Expert Rules in Antimicrobial Susceptibility Testing. Clinical Microbiology Infections 2013; 19: 141-160 doi: 0.1111/j.1469-0691.2011.03703.x.
  • 61. Humphries RM, Ambler J, Mitchell LS, Castanheira M, Dingle T, et al. CLSI Methods Development and Standardization Working Group Best Practicesfor Evaluation of Antimicrobial Susceptibility Tests. Journal of Clinical Microbiology 2018; 56.
  • 62. Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018; 23. doi: 10.2807/1560-7917.ES.2018.23.6.17-00672.
  • 63. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y, et al. Genotyping using wholegenome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy 2013; 68: 771-777. doi: 10.1093/jac/dks496.

Extendend Spectrum Beta-Lactamase with Carbapenem and Colsitin Resistance on Enterobacteriaceae Strains

Year 2022, Volume: 3 Issue: 1, 12 - 19, 30.06.2022

Abstract

Recently, antibiotic resistance has become an important risk threatening human and animal health. Multiple antibiotic drug resistance is frequently reported by researchers. An important topic on antibiotic resistance is Extended Spectrum Beta-lactamases, and the ESBL group consists of microorganisms that show multiple antibiotic resistance. ESBL positive bacteria are also present in animals and can infect humans through food. Therefore, the issue of ESBL is a common subject of both human and veterinary medicine. ESBL is followed closely by the scientific world and still continues its classification and species analysis studies. Therefore, the World Health Organization recommends regular follow-up of microorganisms that develop multiple antibiotic resistance, and ESBL screening and verification methods can be performed with various analyzes. Antibiotics containing carbapenems are reported as an important group used in human medicine, and resistance to carbapenem group antibiotics used against ESBL positive bacteria is increasing day by day. However, antibiotic resistance in the carbapenem group used against ESBL is life-threatening, especially in patients in intensive care. Colistin is known as the last resort antibiotic and used in combination then once again the focus of attention in the scientific world with these developments. The aim of this study is to reveal the importance of ESBL, carbapenems, and colistin antibiotic groups and the resistance developing against these antibiotic groups.

References

  • 1. Topçu AW, Söyletir G, Doganay M. Enfeksiyon Hastalıkları ve Mikrobiyolojisi. Nobel Tıp Kitabevleri, İstanbul, 2008; 3: 2126-2135.
  • 2. Ofer-Friedman H, Shefler C, Sharma S, Tirosh A, Tal-Jasper R, et al. Carbapenems Versus PiperacillinTazobactam for Bloodstream Infections of Nonurinary Source Caused by Extended- Spectrum Beta-Lactamase– Producing Enterobacteriaceae. Infection Control Hospital Epidemiology 2015; 36: 981-5. doi: 10.1017/ice.2015.101.
  • 3. Newly Reported Gene, mcr-1, Threatens Last-Resort Antibiotics. CDC 2016, https://www.cdc.gov/drugresistance/solutions-initiative/stories/gene-reported-mcr.html#:~:text=The%20gene%20has%20the%20potential,because%20of%20its%20side%20effects, Erişim: 10. 2. 2022.
  • 4. Murray RP, Rosenthal KS, Pfaller AM. Enterobacteriaceae in Bacteriology. Medical Microbiology 2009; 25: 257-270.
  • 5. Centers for Disease Control and Prevention (CDC), Laboratory protocol for detection of carbapenem-resistant or carbapenemase producing, Klebsiella spp. and E. coli from rectal swabs, http://www.cdc.gov/hai/pdfs/labsettings/ klebsiella_or_ecoli.pdf. 2011.
  • 6. Health Protection Agency (HPA), Advice on carbapenemase producers: recognition, infection control and treatment. www.hpa.org.uk; 2011.
  • 7. European Committee on Antimicrobial Susceptibility Testing (EUCAST), EUCAST breakpoint tables for interpretation of MICs and zone diameters 2011.
  • 8. Ustaçelebi Ş. Temel ve Klinik Mikrobiyoloji. Güneş Kitapevi, Ankara, 1999; 509-511.
  • 9. Lukac PJ, Bonomo RA, Logan LK. Extended-Spectrum -LactamaseProducing Enterobacteriaceae in Children: Old Foe, Emerging Threat. Clinical Infectious Diseases 2015; 60: 1389–1397. doi.org/10.1093/cid/civ020.
  • 10. Forster CS, Courter J, Jackson EC, Mortensen JE, Haslam DB, Frequency of Multidrug-Resistant Organisms Cultured From Urine of Children Undergoing Clean Intermittent Catheterization. J Pediatric Infectious Diseases Society 2016; 6: 20. doi.org/10.1093/jpids/piw056.
  • 11. Murray BE, Anderson K, Arnold K, Barlett J, Carpenter C, Erratum. Clinical Infectious Diseases 2005; 41: 279. doi.org/10.1086/430468.
  • 12. Gür D. Beta-laktamazlar. Flora Dergisi 1997; 2: 3-18.
  • 13. Pitout JDD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriacea: an emerging public health concern. The Lancet Infectious Diseases 2008; 8: 159-166. doi: 10.1016/S1473-3099(08)70041-0.
  • 14. Ramphal R, Ambrose GP. Extended-Spectrum β-Lactamases and Clinical Outcomes: Current Data, Clinical Infectious Diseases, 2006; 42: 164–172, https://doi.org/10.1086/500663.
  • 15. Cantón R, Novais A, Valverde A, Machado E, Peixe L, et al. Prevalence and spread of extended-spectrum b-lactamase-producing Enterobacteriaceae in Europe. Clinical Microbiology and Infection 2008; 14: 144–153. doi.org/10.1111/j.1469-0691.2007.01850.x.
  • 16. Brolundab A, Edquista PJ, Mäkitaloa B, Olsson-Liljequista B, Söderbloma T, et al. Epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in Sweden 2007–2011. Clinical Microbiology and Infection 2014; 20: 344-352. doi: 10.1111/1469-0691.12413.
  • 17. Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clinical Microbiology and Infection 2000; 6: 460-463. doi:10.1046/j.1469-0691.2000.00107.x.
  • 18. Harada S, Ishii Y, Yamaguchi K. Extended-spectrum β-lactamases: Implications for the clinical laboratory and therapy. Korean Journal of Laboraty Medicine 2008; 28: 401-412. doi: 10.3343/kjlm.2008.28.6.401.
  • 19. Bush K, Jacoby AG. Updated functional classification of β–Lactamases. Antimicrobial Agents and Chemotherapy 2010; 969–976. doi: 10.1128/AAC.01009-09.
  • 20. Tolun V, Küçükbasmacı O, Törümküney-Akbulut D, Catal C, Anğ-Küçüker M, Anğ O. Relationship between ciprofl oxacin resistance and extended-spectrum beta-lactamase production in Escherichia coli and Klebsiella pneumoniae strains. Clinical Microbiology and Infection 2004; 10: 72-75. doi: 10.1111/j.1469-0691.2004.00723.x.
  • 21. Canton R, Coque TM. The CTX-M β-lactamase pandemic. Current Opinion In Microbiology 2006; 9: 466-475. doi: 10.1016/j.mib.2006.08.011.
  • 22. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a Clinical Update. Clinical Microbiology Reviews 2005; 18: 657-686. doi: 10.1128/CMR.18.4.657-686.2005.
  • 23. Stürenburg E, Mack D. Extended spektrum beta lactamases: Implications for the clinical microbiology laboratory, therapy and infection control. Journal of Infection 2003; 47: 279-295. doi: 10.1016/s0163-4453(03)00096-3.
  • 24. Gür D. ESBL’ların Genel Özellikleri ve ESBL Tipleri. Yeni ve Yeniden Gündeme Gelen İnfeksiyonlar, Bilimsel Tıp Yayınevi, Ankara, 2004.
  • 25. Canton R, Morosini MI, Martin O, Maza S. IRT and CMT beta lactamases and inhibtor resistance. Clinical Microbiology and Infection 2008; 14: 53-62 doi.org/10.1111/j.1469-0691.2007.01849.x.
  • 26. Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 1995; 8: 557-84. doi: 10.1128/CMR.8.4.557.
  • 27. Jacoby G, Bush K. Lahey clinic page on amino acid sequence for TEM, SHV and OXA extended spectrum and inhibitor resistant beta-lactamases. http://www.lahey.org/Studies.
  • 28. Nordman P, Ronco E, Naas T, Duport C, MichelBriand Y, Labia R. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1993; 37: 962–969. doi: 10.1128/AAC.37.5.962.
  • 29. Nordmann P, Naas T. Sequence analysis of PER-1 extended spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrobial Agents and Chemotherapy 1994; 38: 104-114. doi: 10.1128/AAC.38.1.104.
  • 30. Poirl L, Naas T, Guibert M, Chaibi B, Labia R, Nordmann P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an E. coli integron gene. Antimicrobial Agents and Chemotherapy 1999; 43: 573-581. doi.org/10.1128/AAC.43.3.573.
  • 31. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clinical Microbiology and Infection 2002; 8: 321–331. doi.org/10.1046/j.1469-0691.2002.00401.x.
  • 32. Clinical and Laboratory Standarts Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-first informational Supplement, 2011; 144-147.
  • 33. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance, 2017.
  • 34. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clinical Microbiology Reviews 2005; 18: 657-86. doi.org/10.1128/CMR.18.4.657-686.2005.
  • 35. Biendenbach DJ, Toleman M, Walsh TR, Jones RN. Analysis of Salmonella spp. with resistance to extended-spectrum cephalosporins and fluoroquinolones Antimicrobial Surveillance Program (1997- 2004), Diagnostic Microbiology and Infection Disease 2006; 54: 13-21.
  • 36. Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clinical Microbiology and Infection 2008; 14: 90-103. doi.org/10.1111/j.1469-0691.2007.01846.x.
  • 37. Platteel TN, Cohen Stuart JW, de Neeling AJ, Vorts GM, Scharringa J et al. Multi-centre evaluation of a phenotypic extended spectrum β-lactamase detection guideline in the routine setting. Clinical Microbiology and Infection 2013; 19: 70-76. doi.org/10.1111/j.1469-0691.2011.03739.x.
  • 38. Wiegand I, Geiss HK, Mack D, Stürenburg E, Seifert H. Detection of extended-spectrum beta-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures. Journal of Clinical Microbiology 2007; 45: 1167- 1174. doi.org/10.1128/JCM.01988-06.
  • 39. Sanguinetti M, Posteraro B, Spanu T, Ciccaglione D, Romano L, Fiori B. Characterization of clinical isolates of Enterobacteriaceae from Italy by the BD Phoenix extended-spectrum beta-lactamase detection method. Journal of Clinical Microbiology 2003; 41: 1463-1468. doi: 10.1128/JCM.41.4.1463-1468.2003.
  • 40. Randall LP, Kirchner M, Teale CJ, Coldham NG, Liebana E, et al. Evaluation of CHROMagar CTX, a novel medium for isolating CTX-M-ESBL positive Enterobacteriaceae while inhibiting AmpC- producing strains. Journal of Antimicrobial Chemotherapy 2009; 63: 302-308. doi.org/10.1093/jac/dkn485.
  • 41. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews 2001; 14: 933-951. doi.org/10.1128/CMR.14.4.933-951.2001.
  • 42. Yohei D Ertapenem, Imipenem, Meropenem, Doripenem, and Aztreonam. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 2015; 22: 285-290.
  • 43. Patel G, Bonomo AR “Stormy waters ahead”: global emergence of carbapenemases. Frontier in Microbiology 2013. doi: 10.3389/fmicb.2013.00048.
  • 44. Cantón, R, Carmeli Y, Giske G, Nass T, Miriagou V. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clinical Microbiology and Infection 2012; 18: 413-431, doi.org/10.1111/j.1469-0691.2012.03821.x.
  • 45. Kumarasamy KK, Toleman AM, Walsh RT, Bagaia J, Butt F et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet İnfection Diseases 2010; 10: 597-602. doi.org/10.1016/S1473-3099(10)70143-2.
  • 46. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. The Journal of Infectious Diseases 2017; 215: 28-36. doi.org/10.1093/infdis/jiw282.
  • 47. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Identification and screening of carbapenemase-producing Enterobacteriaceae. Clinical Microbiology and Infections 2012; 18: 432-438 doi: 10.1111/j.1469-0691.2012.03815.x.
  • 48. Avlami A, Bekris S, Ganteris G, Kraniotaki E, Paniara O, et al. Detection of metallo-beta-lactamase genes in clinical specimens by a commercial multiplex PCR system. Journal of Microbiological Methods 2010; 83: 185-187. doi.org/10.1016/j.mimet.2010.08.014
  • 49. Poirel L, Walsh RT, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease 2011; 70: 119-23. doi.org/10.1016/j.diagmicrobio.2010.12.002.
  • 50. Ustaçelebi Ş. Temel ve Klinik Mikrobiyoloji. Güneş Kitapevi, Ankara, 1999; 509-513.
  • 51. Bilgehan H. Klinik Mikrobiyolojik Tanı. Fakülteler Kitapevi, İzmir, 2009; 428-29.
  • 52. Boisson M, Gregoire N, Couet W, Mimoz O. Colistin in critically ill patients. Minerva Anestesiol 2013; 79: 200-208.
  • 53. Akalın H. Kolistin. Ankem 2007; 21: 26-28.
  • 54. World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine, 3rd edn. Geneva, Switzerland: World Health Organization (WHO), 2012.
  • 55. Lenhard JR, Bulman ZP, Tsuji BT, Kaye KS. Shifting gears: the future of polymyxin antibiotics. Antibiotics, Basel, 2019; 8: 42. doi.org/10.3390/antibiotics8020042.
  • 56. Giske CG, Kahlmeter G. Colistin Antimicrobial Susceptibility Testing—Can the Slow and Challenging Be Replaced by the Rapid and Convenient?. Clinical Microbiology and Infection 2018; 24: 93-94. doi.org/10.1016/j.cmi.2017.10.007.
  • 57. Stürenburg E, Sobottka I, Noor D, Laufs R, Mack D. Evulation of a new cefepime-clavulanate ESBL Etest to detect extended-spectrum β-lactamases in a Enterobacteriaceae starin cellection. Journal of Antimicrobial Chemotherapy 2004; 54: 134-138. doi.org/10.1093/jac/dkh274.
  • 58. Hindler JA, Humphries RM. Colistin MicVariability by Method for Contemporary Clinical Isolates of Multidrug-Resistant Gram-Negative Bacilli. Journal of Clinical Microbiology 2013; 51: 1678-1684. doi.org/10.1128/JCM.03385-12.
  • 59. Baron EJ, Peterson LR, Finegold SM. Enterobacteriaceae, Bailey & Scott’s Diagnostic Microbiology, Baltimore, Mosby Year Book, 1994; 362-387.
  • 60. Leclercq R, Canton R, Brown JDF, Giske GC, Heisig P, MacGowan PA, et al. Eucast Expert Rules in Antimicrobial Susceptibility Testing. Clinical Microbiology Infections 2013; 19: 141-160 doi: 0.1111/j.1469-0691.2011.03703.x.
  • 61. Humphries RM, Ambler J, Mitchell LS, Castanheira M, Dingle T, et al. CLSI Methods Development and Standardization Working Group Best Practicesfor Evaluation of Antimicrobial Susceptibility Tests. Journal of Clinical Microbiology 2018; 56.
  • 62. Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018; 23. doi: 10.2807/1560-7917.ES.2018.23.6.17-00672.
  • 63. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y, et al. Genotyping using wholegenome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy 2013; 68: 771-777. doi: 10.1093/jac/dks496.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Reviews
Authors

Ali Anıl Süleymanoğlu 0000-0002-7091-5826

Harun Aksu 0000-0001-5948-2030

Ali Aydın 0000-0002-4931-9843

Publication Date June 30, 2022
Submission Date February 13, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

Vancouver Süleymanoğlu AA, Aksu H, Aydın A. Enterobacteriaceae Suşlarında Genişlemiş Spektrumlu Beta-laktamaz ile Karbapenem ve Kolistin Direnci. Bozok Vet Sci. 2022;3(1):12-9.