Review
BibTex RIS Cite

ISI ŞOK PROTEİNLERİ VE İN VİTRO EMBRİYO

Year 2018, Volume: 1 Issue: 3, 89 - 93, 01.07.2018

Abstract

Uzun yıllardır çeşitli şekillerde in vitro embriyo üretimi yapılmaktadır. Bu alanda önemli bir mesafe alınmasına rağmen istenilen seviyede in vitro embriyo üretiminin gerçekleştirilememesinin nedeni in vitro kültür ortamların da in vivo şartların tam olarak taklit edilememesidir. İn vitro kültür ortamlarında bir takım biyolojik, çevresel bileşen ve ortam sıcaklığında embriyonun strese maruz kalıp tepki olarak stres proteinleri üretmektedir. Stres proteinleri, organizmanın maruz kaldığı kültür medyumu bileşenleri, serum (FSC, ECS), UV ışınları, toksin, arsenik, pH değişimi, iskemia, oksidatif fosforilasyon, sıcak-soğuk ve enfeksiyon durumunda yanıt olarak üretimi artan ve büyüklükleri 100-8 kDA arasında değişen proteinlerdir. Bu proteinlerden HSP70, yüksek oranda korunmuş olan kompakt amino termal bölgesi ve zayıf ATPaz aktivitesi gibi iki büyük etki alanına sahiptir ve ısı şok faktörlerin (HSF) aktivitesini düzenler. İn vitro kültürde embriyo gelişimi çevresel streslerden etkilenmekte ve embriyo gelişim sürecinde HSP70’in apoptoziz de rol aldığına ilişkin deliller bulunmaktadır. Kültür ortamında serum varlığının embriyo implantasyon oranını düşürebileceği düşünülmektedir. Bu derlemede, in vitro oosit olgunlaştırması ve embriyo üretiminde strese bağlı olarak üretilen ısı şok proteinleri ve bunların çeşitleri açıklanmaya çalışılmıştır. Ayrıca bu proteinlerin in vitro embriyo üretim etkinliğine olan muhtemel etkileri de tartışılmıştır.

References

  • Al-Whaibi MH. 2011. Plant heat-shock proteins: a mini review. J King Saud Univ Sci, 23(2): 139-150.
  • Aşkar TK, Ergün N, Turunç V. 2007. Isı şok proteinler ve fizyolojik rolleri. Kafkas Üniv Vet Fak Derg, 13 (1): 109-114.
  • Aufricht C. 2005. Heat-shock protein 70: Molecular supertool? Pediat Nephrol, 20(6): 707-713.
  • Beckmann RP, Mizzen L, Welch WJ. 1990. Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly. Sci, 248(4957): 850-854.
  • Carcy B, Précigout E, Valentin A, Gorenflot A, Reese R T ve Schrével J. 1991. Heat shock response of Babesia divergens and identification of the hsp 70 as an immunodominant early antigen during ox, gerbil and human babesiosis. Biol Cell, 72(1‐2): 93-102.
  • Chiang HL, Plant C, Dice J. 1989. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Sci, 246(4928): 382-385.
  • Choi YK, Jo PG, Choi CY. 2008. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas. Compar Biochem Physiol Part C: Toxicol Pharmacol, 147(3): 286-292.
  • Ciocca DR, Calderwood SK. 2005. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chap, 10(2): 86-103.
  • Dobson CM, Ellis RJ. 1998. Protein folding and misfolding inside and outside the cell. The EMBO J, 17(18): 5251-5254.
  • Edwards JL, Hansen PJ. 1997. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Molec Reprod Develop, 46(2): 138-145.
  • Ferns G, Shams S, Shafi S. 2006. Heat shock protein 27: its potential role in vascular disease. Inter J Exper Pathol, 87(4): 253-274. Fields PI, Swanson RV, Haidaris CG, Heffron F. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proceed National Acad Sci, 83(14): 5189-5193.
  • Jaattela M. 1999. Heat shock proteins as cellular lifeguards. Annals Med, 31(4): 261-271.
  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. 2004. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 429(6994): 900.
  • Lannett Edwards J, Hansen PJ. 1996. Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol Reprod, 55(2): 340-346.
  • Lyons C, Dowling V, Tedengren M, Gardeström J, Hartl MG, O'Brien N, van Pelt FN, O'Halloran J, Sheehan D. 2003. Variability of heat shock proteins and glutathione S-transferase in gill and digestive gland of blue mussel, Mytilus edulis. Mar Environ Res, 56(5): 585-597.
  • Macario AJ, De macario EC. 2005. Sick chaperones, cellular stress, and disease. N Engl J Med, 353(14): 1489-1501.
  • Matwee C, Betts DH, King WA. 2000. Apoptosis in the early bovine embryo. Zygote, 8(1): 57-68.
  • Matwee C, Kamaruddin M, Betts D H, Basrur P, King WA. 2001. The effects of antibodies to heat shock protein 70 in fertilization and embryo development. Mol Hum Reprod, 7(9): 829-837.
  • Matz C J, Treble RG, Krone P H (2007). Accumulation and elimination of cadmium in larval stage zebrafish following acute exposure. Ecotoxicol Environ Saf, 66(1): 44-48.
  • Möbius J, Groos S, Meinhardt A, Seitz J. 1997. Differential distribution of the mitochondrial heat-shock protein 60 in rat gastrointestinal tract. Cell Tissue Res, 287(2): 343-350.
  • Multhoff G. 2006. Molecular Chaperones in Health and Disease. Springer, 279-304.
  • Öztürk E, Kahveci N, Özlük K, Yılmazlar T. 2009. Isı şok proteinleri. Turk J Sur, 25(4): 131-136.
  • Pulur A, Karaca İ, Yıldırım Karaca S. 2017. Isı şok protein 70 (Heat Shock Proteın 70) düzeylerinin normal ve preeklamptik gebelerdeki seviyesi. Tepecik Eğit Hast Derg, 27(2): 88-92.
  • Rougvie AE, Lis JT. 1988. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell, 54(6): 795-804.
  • Samali A, Orrenius S. 1998. Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones, 3(4): 228-236. Schlesinger MJ. 1990. Heat shock proteins. J Biol Chem, 265(21): 12111-12114.
  • Şen U, Kuran M. 2018. Low incubation temperature successfully supports the in vitro bovine oocyte maturation and subsequent development of embryos. Asian-Australas J Anim Sci, 31(6): 827-834.
  • Velazquez JM, Lindquist S. 1984. HSP 70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell, 36(3): 655-662.
  • Walsh D, Li Z, Wu Y, Nagata K. 1997. Heat shock and the role of the HSPs during neural plate induction in early mammalian CNS and brain development. Cell Mol Life Sci, 53(2): 198-211.
  • Welch WJ. 1992. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev, 72(4): 1063-1081.
  • Welch W J, Garrels J I, Thomas G, Lin J, Feramisco JR. 1983. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose-and Ca2+-ionophore-regulated proteins. J Biol Chem, 258(11): 7102-7111.
  • Whitley D, Goldberg SP, Jordan WD. 1999. Heat shock proteins: a review of the molecular chaperones. J Vascul Sur, 29(4): 748-751.
  • Wrenzycki C, Herrmann D, Carnwath J, Niemann H. 1999. Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Molec Reprod Develop, 53(1): 8-18.
  • Zhang XY, Zhang MZ, Zheng CJ, Liu J, Hu HJ. 2009. Identification of two hsp90 genes from the marine crab, Portunus trituberculatus and their specific expression profiles under different environmental conditions. Comp Biochem Physiol C Toxicol Pharmacol, 150(4): 465-473.

Heat Shock Proteins and In Vitro Embryo

Year 2018, Volume: 1 Issue: 3, 89 - 93, 01.07.2018

Abstract

For
a long period of time significant progress attained in in vitro embryo
production. Despite desired levels has not been reached  the main reason are inability to imitate in
vivo conditions of in vitro culture medium precisely and embryo be exposed to
stress factors such as environmental conditions, temperature and biological
components as a reaction produce stress proteins. Stress proteins which are
increased in the organism during culture medium components, serums (FCS, ECS),
UV rays, toxin, arsenic, pH, ischemia, oxidative phosphorylation, cold and hot
conditions and during infections and vary in size between 100 to 8 kDA. HSP70
has two main domains, compact amino terminal site and low ATPase activity which
been highly conserved and it regulate heat shock activity. During in vitro
embryo production, the effect of environmental stress and embryo development
processes in relation with the roll of HSP70 is very important. Presence of
serum in the culture medium thought that it decreased the embryo development rate.
In this review, we attempted to explain heat shock proteins and their varieties
produced in vitro by oocyte maturation and embryo production. Furthermore, the
possible effects of these proteins on in vitro embryo production activity have
been discussed.

References

  • Al-Whaibi MH. 2011. Plant heat-shock proteins: a mini review. J King Saud Univ Sci, 23(2): 139-150.
  • Aşkar TK, Ergün N, Turunç V. 2007. Isı şok proteinler ve fizyolojik rolleri. Kafkas Üniv Vet Fak Derg, 13 (1): 109-114.
  • Aufricht C. 2005. Heat-shock protein 70: Molecular supertool? Pediat Nephrol, 20(6): 707-713.
  • Beckmann RP, Mizzen L, Welch WJ. 1990. Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly. Sci, 248(4957): 850-854.
  • Carcy B, Précigout E, Valentin A, Gorenflot A, Reese R T ve Schrével J. 1991. Heat shock response of Babesia divergens and identification of the hsp 70 as an immunodominant early antigen during ox, gerbil and human babesiosis. Biol Cell, 72(1‐2): 93-102.
  • Chiang HL, Plant C, Dice J. 1989. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Sci, 246(4928): 382-385.
  • Choi YK, Jo PG, Choi CY. 2008. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas. Compar Biochem Physiol Part C: Toxicol Pharmacol, 147(3): 286-292.
  • Ciocca DR, Calderwood SK. 2005. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chap, 10(2): 86-103.
  • Dobson CM, Ellis RJ. 1998. Protein folding and misfolding inside and outside the cell. The EMBO J, 17(18): 5251-5254.
  • Edwards JL, Hansen PJ. 1997. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Molec Reprod Develop, 46(2): 138-145.
  • Ferns G, Shams S, Shafi S. 2006. Heat shock protein 27: its potential role in vascular disease. Inter J Exper Pathol, 87(4): 253-274. Fields PI, Swanson RV, Haidaris CG, Heffron F. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proceed National Acad Sci, 83(14): 5189-5193.
  • Jaattela M. 1999. Heat shock proteins as cellular lifeguards. Annals Med, 31(4): 261-271.
  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. 2004. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 429(6994): 900.
  • Lannett Edwards J, Hansen PJ. 1996. Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol Reprod, 55(2): 340-346.
  • Lyons C, Dowling V, Tedengren M, Gardeström J, Hartl MG, O'Brien N, van Pelt FN, O'Halloran J, Sheehan D. 2003. Variability of heat shock proteins and glutathione S-transferase in gill and digestive gland of blue mussel, Mytilus edulis. Mar Environ Res, 56(5): 585-597.
  • Macario AJ, De macario EC. 2005. Sick chaperones, cellular stress, and disease. N Engl J Med, 353(14): 1489-1501.
  • Matwee C, Betts DH, King WA. 2000. Apoptosis in the early bovine embryo. Zygote, 8(1): 57-68.
  • Matwee C, Kamaruddin M, Betts D H, Basrur P, King WA. 2001. The effects of antibodies to heat shock protein 70 in fertilization and embryo development. Mol Hum Reprod, 7(9): 829-837.
  • Matz C J, Treble RG, Krone P H (2007). Accumulation and elimination of cadmium in larval stage zebrafish following acute exposure. Ecotoxicol Environ Saf, 66(1): 44-48.
  • Möbius J, Groos S, Meinhardt A, Seitz J. 1997. Differential distribution of the mitochondrial heat-shock protein 60 in rat gastrointestinal tract. Cell Tissue Res, 287(2): 343-350.
  • Multhoff G. 2006. Molecular Chaperones in Health and Disease. Springer, 279-304.
  • Öztürk E, Kahveci N, Özlük K, Yılmazlar T. 2009. Isı şok proteinleri. Turk J Sur, 25(4): 131-136.
  • Pulur A, Karaca İ, Yıldırım Karaca S. 2017. Isı şok protein 70 (Heat Shock Proteın 70) düzeylerinin normal ve preeklamptik gebelerdeki seviyesi. Tepecik Eğit Hast Derg, 27(2): 88-92.
  • Rougvie AE, Lis JT. 1988. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell, 54(6): 795-804.
  • Samali A, Orrenius S. 1998. Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones, 3(4): 228-236. Schlesinger MJ. 1990. Heat shock proteins. J Biol Chem, 265(21): 12111-12114.
  • Şen U, Kuran M. 2018. Low incubation temperature successfully supports the in vitro bovine oocyte maturation and subsequent development of embryos. Asian-Australas J Anim Sci, 31(6): 827-834.
  • Velazquez JM, Lindquist S. 1984. HSP 70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell, 36(3): 655-662.
  • Walsh D, Li Z, Wu Y, Nagata K. 1997. Heat shock and the role of the HSPs during neural plate induction in early mammalian CNS and brain development. Cell Mol Life Sci, 53(2): 198-211.
  • Welch WJ. 1992. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev, 72(4): 1063-1081.
  • Welch W J, Garrels J I, Thomas G, Lin J, Feramisco JR. 1983. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose-and Ca2+-ionophore-regulated proteins. J Biol Chem, 258(11): 7102-7111.
  • Whitley D, Goldberg SP, Jordan WD. 1999. Heat shock proteins: a review of the molecular chaperones. J Vascul Sur, 29(4): 748-751.
  • Wrenzycki C, Herrmann D, Carnwath J, Niemann H. 1999. Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Molec Reprod Develop, 53(1): 8-18.
  • Zhang XY, Zhang MZ, Zheng CJ, Liu J, Hu HJ. 2009. Identification of two hsp90 genes from the marine crab, Portunus trituberculatus and their specific expression profiles under different environmental conditions. Comp Biochem Physiol C Toxicol Pharmacol, 150(4): 465-473.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Reviews
Authors

Leyla Bener

Rabia Yaşar This is me

Mehmet Kuran This is me

Publication Date July 1, 2018
Submission Date March 23, 2018
Acceptance Date March 23, 2018
Published in Issue Year 2018 Volume: 1 Issue: 3

Cite

APA Bener, L., Yaşar, R., & Kuran, M. (2018). ISI ŞOK PROTEİNLERİ VE İN VİTRO EMBRİYO. Black Sea Journal of Agriculture, 1(3), 89-93.

                                                  24890