Research Article
BibTex RIS Cite

Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate

Year 2025, Volume: 8 Issue: 5, 1577 - 1584, 15.09.2025
https://doi.org/10.34248/bsengineering.1733519

Abstract

In this study, MnWO₄ nanoparticles were successfully synthesized via a CTAB-assisted hydrothermal method and evaluated for their photocatalytic degradation performance against Methyl Red (MR) dye under UV-C irradiation. Structural and morphological characterizations were performed using XRD, FTIR, SEM, and UV-DRS techniques, confirming the formation of highly crystalline monoclinic MnWO₄ with defect-rich surfaces. The photocatalytic experiments were conducted under UV-C light (254 nm) with a catalyst dosage of 0.5 g/L, initial MR concentration of 20 mg/L, and solution pH of 6.5. The synthesized MnWO₄ exhibited excellent degradation efficiency, achieving 98% MR removal within 90 minutes, outperforming several conventional photocatalysts. This work addresses a critical gap in the literature by demonstrating the enhanced activity of CTAB-modified MnWO₄ under UV-C light, offering a promising route for azo dye remediation. The findings suggest that morphology control and surface defect engineering significantly influence photocatalytic performance, making MnWO₄ a viable candidate for environmental applications.

Ethical Statement

Ethics committee approval was not required for this study because of there was no study on animals or humans.

References

  • Ahmad MA, Ahmad N, Bello OS. 2015. Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions. Appl Water Sci, 5(4): 407–423. https://doi.org/10.1007/s13201-014-0208-4
  • Ahmad MA, Ahmed NB, Adegoke KA, Bello OS. 2019. Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus). Chem Data Collect, 22: 100249. https://doi.org/10.1016/j.cdc.2019.100249
  • Alharbi AA, Aldaghri O, El-Badry BA, Ibnaouf KH, Alfadhl F, Albadri A, Modwi A. 2024. Degradation of methyl red dye via fabricated Y₂O₃–MgO/g-C₃N₄ nanostructures: modification of band gap and photocatalysis under visible light. Opt Mater, 152: 115443. https://doi.org/10.1016/j.optmat.2024.115443
  • Allabakshi SM, Srikar PSNSR, Gangwar RK, Maliyekkal SM. 2025. Nonthermal plasma technology for degradation of dyes in wastewater. In: Hamdaoui O (Ed.), Innovative and Hybrid Advanced Oxidation Processes for Water Treatment. Elsevier, pp: 255–278. https://doi.org/10.1016/B978-0-443-14100-3.00001-6
  • Almeida MAP, Cavalcante LS, Varela JA, Li MS, Longo E. 2012. Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO₄ crystals synthesized by the microwave-hydrothermal method. Adv Powder Technol, 23(1): 124–128. https://doi.org/10.1016/j.apt.2011.10.004
  • Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, El Harfi A. 2019. Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11): e02711. https://doi.org/10.1016/j.heliyon.2019.e02711
  • Chakraborty AK, Ganguli S, Kebede MA. 2012. Photocatalytic degradation of 2-propanol and phenol using Au loaded MnWO₄ nanorod under visible light irradiation. J Cluster Sci, 23(2): 437–448. https://doi.org/10.1007/s10876-012-0450-6
  • Gaim YT, Tesfamariam GM, Nigussie GY, Ashebir ME. 2019. Synthesis, characterization and photocatalytic activity of N-doped Cu₂O/ZnO nanocomposite on degradation of methyl red. J Compos Sci, 3(4): 93. https://doi.org/10.3390/jcs3040093
  • Grass RN, Tsantilis S, Pratsinis SE. 2006. Design of high-temperature, gas-phase synthesis of hard or soft TiO₂ agglomerates. AIChE J, 52(4): 1318–1325. https://doi.org/10.1002/aic.10739
  • Hassan MS, Amna T, Al-Deyab SS, Kim HC, Khil MS. 2015. Monodispersed 3D MnWO₄–TiO₂ composite nanoflowers photocatalysts for environmental remediation. Curr Appl Phys, 15(6): 753–758. https://doi.org/10.1016/j.cap.2015.03.022
  • He HY, Huang JF, Cao LY, Wu JP. 2010. Photodegradation of methyl orange aqueous on MnWO₄ powder under different light resources and initial pH. Desalination, 252(1): 66–70. https://doi.org/10.1016/j.desal.2009.10.024
  • Jayakumar P, Palani S, Nallathambi M, Kuppusamy K. 2024. Evaluation of MnWO₄ nanomaterial for enhanced photocatalytic degradation activity over methyl orange. Lett Appl NanoBioSci, 13(1): 1. https://doi.org/10.33263/lianbs131.001
  • Kayhan E. 2025. Temperature-controlled synthesis of bismuth tungstate with enhanced photochromic properties. Int J Appl Ceram Technol, 22(3): e15079. https://doi.org/10.1111/ijac.15079
  • Kayhan M, Aksoy M, Kayhan E. 2024. A facile synthesis of photocatalytic Fe(OH)₃ nanoparticles for degradation of phenol. ChemistrySelect, 9(23): e202401367. https://doi.org/10.1002/slct.202401367
  • Kayhan M, Kayhan E. in press. Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation. Pamukkale Univ J Eng Sci, in press: 0 0. https://doi.org/10.5505/pajes.2025.27723
  • Kayhan M. 2025. Comparative study of photochromic behavior of bismuth tungstate via different surfactants. Ceram Int, 51(14): 19579–19588. https://doi.org/10.1016/j.ceramint.2025.02.133
  • Khaksar M, Boghaei DM, Amini M. 2015. Synthesis, structural characterization and reactivity of manganese tungstate nanoparticles in the oxidative degradation of methylene blue. C R Chim, 18(2): 199–203. https://doi.org/10.1016/j.crci.2014.04.004
  • Kumar KS, Vaishnavi K, Venkataswamy P, Ravi G, Ramaswamy K, Vithal M. 2021. Photocatalytic degradation of methylene blue over N-doped MnWO₄ under visible light irradiation. J Indian Chem Soc, 98(10): 100140. https://doi.org/10.1016/j.jics.2021.100140
  • Li R, Du Y, Tang C, Huang Y, Han G. 2025. Photocatalytic degradation of azo dye wastewater by thermal stripping of g-C₃N₄. In: Al-Majali Y, Wisner B, Mastorakos IN, Hunyadi Murph SE, Paramsothy M (eds) Advances in Sustainable Composites. TMS 2025. Springer, Cham. https://doi.org/10.1007/978-3-031-81057-2_17
  • Luo S, Ke J, Yuan M, Zhang Q, Xie P, Deng L, Wang S. 2018. CuInS₂ quantum dots embedded in Bi₂WO₆ nanoflowers for enhanced visible light photocatalytic removal of contaminants. Appl Catal B Environ, 221: 215–222. https://doi.org/10.1016/j.apcatb.2017.09.028
  • Maya-Johnson S, Gracia L, Longo E, Andres J, Leite ER. 2017. Synthesis of cuboctahedral CeO₂ nanoclusters and their assembly into cuboid nanoparticles by oriented attachment. ChemNanoMat, 3(4): 228–232. https://doi.org/10.1002/cnma.201700005
  • Muthamizh S, Suresh R, Giribabu K, Manigandan R, Praveen Kumar S, Munusamy S, Narayanan V. 2015. MnWO₄ nanocapsules: synthesis, characterization and its electrochemical sensing property. J Alloys Compd, 619: 601–609. https://doi.org/10.1016/j.jallcom.2014.09.049
  • Nagaraja K, Mallika B, Arunpandian M, Ravindran E, Tae Hwan O. 2025. Green synthesis of gold-decorated BaTiO₃-ZnO nanocomposites using Arabic gum polymer for efficient photocatalytic degradation of emerging textile dyes, antimicrobial, and toxicological evaluation. Int J Biol Macromol, 311: 143396. https://doi.org/10.1016/j.ijbiomac.2025.143396
  • Nezzari A, Medina S, Khane Y, Boublenza H, Guezzoul M, Zoukel A, Amrani B. 2025. Photocatalytic degradation of brilliant green dye using Cu₂NiSnS₄ thin films under ultraviolet irradiation. Inorg Chem Commun, 174: 114021. https://doi.org/10.1016/j.inoche.2025.114021
  • Nogami A, Suzuki T, Katsufuji T. 2008. Second harmonic generation from multiferroic MnWO₄. J Phys Soc Jpn, 77(11): 115001. https://doi.org/10.1143/JPSJ.77.115001
  • Pirhashemi M, Habibi-Yangjeh A. 2018. Fabrication of novel ZnO/MnWO₄ nanocomposites with p-n heterojunction: visible-light-induced photocatalysts with substantially improved activity and durability. J Mater Sci Technol, 34(10): 1891–1901. https://doi.org/10.1016/j.jmst.2018.01.014
  • Rao A, Cölfen H. 2017. Facet control in nanocrystal growth. In: Atwood JL (Ed.), Comprehensive Supramolecular Chemistry II. Elsevier, pp: 129–156. https://doi.org/10.1016/B978-0-12-409547-2.12638-1
  • Rastin H, Dell’Angelo D, Sayede A, Badawi M, Habibzadeh S. 2025. Green and sustainable metal-organic frameworks (MOFs) in wastewater treatment: a review. Environ Res, 282: 122087. https://doi.org/10.1016/j.envres.2025.122087
  • Sahoo S, Reddy GBT, Mahamallik P. 2024. Sunlight-assisted photocatalytic degradation of methyl red using g-C₃N₄ as metal-free photocatalyst. In: Mazumder D (ed.) Sustainable Advanced Technologies for Environmental Management. Springer Proc Earth Environ Sci. Springer, Cham. https://doi.org/10.1007/978-3-031-64006-3_1
  • Shalini S, Sasikala T, Tharani D, Venkatesh R, Muthulingam S. 2024. Novel green CQDs/ZnO binary photocatalyst synthesis for efficient visible light irradiation of organic dye degradation. J Mol Liq, 410: 125525. https://doi.org/10.1016/j.molliq.2024.125525
  • Shamshad J, Ur Rehman R. 2025. Innovative approaches to sustainable wastewater treatment: a comprehensive exploration of conventional and emerging technologies. Environ Sci Adv, 4(2): 189–222. https://doi.org/10.1039/D4VA00136B
  • Shivaganga GS, Parameswara P, Mallikarjunaswamy C, Kumar KCS, Soundarya TL, Nagaraju G, Ranganatha VL. 2023. Green, nonchemical route for the synthesis of MnWO₄ nanostructures: photocatalytic and electrochemical performance. J Mater Sci Mater Electron, 34(25): 1791. https://doi.org/10.1007/s10854-023-11190-3
  • Siahsahlan M, Mohammadi Aref S, Naghshara H, Azmayesh R. 2025. The effects of reduced graphene oxide amount on the photocatalytic performance of TiO₂ nanoparticles for hydrogen evolution. Int J Hydrogen Energy, 142: 318–329. https://doi.org/10.1016/j.ijhydene.2025.05.411
  • Vosoughifar M. 2017. Preparation, characterization, and morphological control of MnWO₄ nanoparticles through novel method and its photocatalyst application. J Mater Sci Mater Electron, 28(2): 2135–2140. https://doi.org/10.1007/s10854-016-5777-6
  • Wang G, Xu J, Sun Z, Zheng S. 2020. Surface functionalization of montmorillonite with chitosan and the role of surface properties on its adsorptive performance: a comparative study on mycotoxins adsorption. Langmuir, 36(10): 2601–2611. https://doi.org/10.1021/acs.langmuir.9b03673
  • Wu W, Qin W, He Y, Wu Y, Wu T. 2012. The effect of pH value on the synthesis and photocatalytic performance of MnWO₄ nanostructure by hydrothermal method. J Exp Nanosci, 7(4): 390–398. https://doi.org/10.1080/17458080.2010.533293
  • Xue W, He H, Zhu J, Yuan P. 2007. FTIR investigation of CTAB–Al–montmorillonite complexes. Spectrochim Acta A Mol Biomol Spectrosc, 67(3): 1030–1036. https://doi.org/10.1016/j.saa.2006.09.024
  • Zargazi M, Entezari MH. 2019. Sonochemical versus hydrothermal synthesis of bismuth tungstate nanostructures: photocatalytic, sonocatalytic and sonophotocatalytic activities. Ultrason Sonochem, 51: 1–11. https://doi.org/10.1016/j.ultsonch.2018.10.010
  • Zhang D, Otitoju TA, Ouyang Y, Shoparwe NF, Wang S, Li S. 2021. A review on metal ions modified TiO₂ for photocatalytic degradation of organic pollutants. Catalysts, 11(9): 1039. https://doi.org/10.3390/catal11091039
  • Zheng M, Zhang H, Gong X, Xu R, Xiao Y, Dong H, Liu Y. 2013. A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area. Nanoscale Res Lett, 8(1): 166. https://doi.org/10.1186/1556-276X-8-166

Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate

Year 2025, Volume: 8 Issue: 5, 1577 - 1584, 15.09.2025
https://doi.org/10.34248/bsengineering.1733519

Abstract

In this study, MnWO₄ nanoparticles were successfully synthesized via a CTAB-assisted hydrothermal method and evaluated for their photocatalytic degradation performance against Methyl Red (MR) dye under UV-C irradiation. Structural and morphological characterizations were performed using XRD, FTIR, SEM, and UV-DRS techniques, confirming the formation of highly crystalline monoclinic MnWO₄ with defect-rich surfaces. The photocatalytic experiments were conducted under UV-C light (254 nm) with a catalyst dosage of 0.5 g/L, initial MR concentration of 20 mg/L, and solution pH of 6.5. The synthesized MnWO₄ exhibited excellent degradation efficiency, achieving 98% MR removal within 90 minutes, outperforming several conventional photocatalysts. This work addresses a critical gap in the literature by demonstrating the enhanced activity of CTAB-modified MnWO₄ under UV-C light, offering a promising route for azo dye remediation. The findings suggest that morphology control and surface defect engineering significantly influence photocatalytic performance, making MnWO₄ a viable candidate for environmental applications.

Ethical Statement

Ethics committee approval was not required for this study because of there was no study on animals or humans.

References

  • Ahmad MA, Ahmad N, Bello OS. 2015. Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions. Appl Water Sci, 5(4): 407–423. https://doi.org/10.1007/s13201-014-0208-4
  • Ahmad MA, Ahmed NB, Adegoke KA, Bello OS. 2019. Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus). Chem Data Collect, 22: 100249. https://doi.org/10.1016/j.cdc.2019.100249
  • Alharbi AA, Aldaghri O, El-Badry BA, Ibnaouf KH, Alfadhl F, Albadri A, Modwi A. 2024. Degradation of methyl red dye via fabricated Y₂O₃–MgO/g-C₃N₄ nanostructures: modification of band gap and photocatalysis under visible light. Opt Mater, 152: 115443. https://doi.org/10.1016/j.optmat.2024.115443
  • Allabakshi SM, Srikar PSNSR, Gangwar RK, Maliyekkal SM. 2025. Nonthermal plasma technology for degradation of dyes in wastewater. In: Hamdaoui O (Ed.), Innovative and Hybrid Advanced Oxidation Processes for Water Treatment. Elsevier, pp: 255–278. https://doi.org/10.1016/B978-0-443-14100-3.00001-6
  • Almeida MAP, Cavalcante LS, Varela JA, Li MS, Longo E. 2012. Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO₄ crystals synthesized by the microwave-hydrothermal method. Adv Powder Technol, 23(1): 124–128. https://doi.org/10.1016/j.apt.2011.10.004
  • Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, El Harfi A. 2019. Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11): e02711. https://doi.org/10.1016/j.heliyon.2019.e02711
  • Chakraborty AK, Ganguli S, Kebede MA. 2012. Photocatalytic degradation of 2-propanol and phenol using Au loaded MnWO₄ nanorod under visible light irradiation. J Cluster Sci, 23(2): 437–448. https://doi.org/10.1007/s10876-012-0450-6
  • Gaim YT, Tesfamariam GM, Nigussie GY, Ashebir ME. 2019. Synthesis, characterization and photocatalytic activity of N-doped Cu₂O/ZnO nanocomposite on degradation of methyl red. J Compos Sci, 3(4): 93. https://doi.org/10.3390/jcs3040093
  • Grass RN, Tsantilis S, Pratsinis SE. 2006. Design of high-temperature, gas-phase synthesis of hard or soft TiO₂ agglomerates. AIChE J, 52(4): 1318–1325. https://doi.org/10.1002/aic.10739
  • Hassan MS, Amna T, Al-Deyab SS, Kim HC, Khil MS. 2015. Monodispersed 3D MnWO₄–TiO₂ composite nanoflowers photocatalysts for environmental remediation. Curr Appl Phys, 15(6): 753–758. https://doi.org/10.1016/j.cap.2015.03.022
  • He HY, Huang JF, Cao LY, Wu JP. 2010. Photodegradation of methyl orange aqueous on MnWO₄ powder under different light resources and initial pH. Desalination, 252(1): 66–70. https://doi.org/10.1016/j.desal.2009.10.024
  • Jayakumar P, Palani S, Nallathambi M, Kuppusamy K. 2024. Evaluation of MnWO₄ nanomaterial for enhanced photocatalytic degradation activity over methyl orange. Lett Appl NanoBioSci, 13(1): 1. https://doi.org/10.33263/lianbs131.001
  • Kayhan E. 2025. Temperature-controlled synthesis of bismuth tungstate with enhanced photochromic properties. Int J Appl Ceram Technol, 22(3): e15079. https://doi.org/10.1111/ijac.15079
  • Kayhan M, Aksoy M, Kayhan E. 2024. A facile synthesis of photocatalytic Fe(OH)₃ nanoparticles for degradation of phenol. ChemistrySelect, 9(23): e202401367. https://doi.org/10.1002/slct.202401367
  • Kayhan M, Kayhan E. in press. Synthesis, characterization, and photocatalytic performance evaluation of manganese tungstate for methyl red dye degradation. Pamukkale Univ J Eng Sci, in press: 0 0. https://doi.org/10.5505/pajes.2025.27723
  • Kayhan M. 2025. Comparative study of photochromic behavior of bismuth tungstate via different surfactants. Ceram Int, 51(14): 19579–19588. https://doi.org/10.1016/j.ceramint.2025.02.133
  • Khaksar M, Boghaei DM, Amini M. 2015. Synthesis, structural characterization and reactivity of manganese tungstate nanoparticles in the oxidative degradation of methylene blue. C R Chim, 18(2): 199–203. https://doi.org/10.1016/j.crci.2014.04.004
  • Kumar KS, Vaishnavi K, Venkataswamy P, Ravi G, Ramaswamy K, Vithal M. 2021. Photocatalytic degradation of methylene blue over N-doped MnWO₄ under visible light irradiation. J Indian Chem Soc, 98(10): 100140. https://doi.org/10.1016/j.jics.2021.100140
  • Li R, Du Y, Tang C, Huang Y, Han G. 2025. Photocatalytic degradation of azo dye wastewater by thermal stripping of g-C₃N₄. In: Al-Majali Y, Wisner B, Mastorakos IN, Hunyadi Murph SE, Paramsothy M (eds) Advances in Sustainable Composites. TMS 2025. Springer, Cham. https://doi.org/10.1007/978-3-031-81057-2_17
  • Luo S, Ke J, Yuan M, Zhang Q, Xie P, Deng L, Wang S. 2018. CuInS₂ quantum dots embedded in Bi₂WO₆ nanoflowers for enhanced visible light photocatalytic removal of contaminants. Appl Catal B Environ, 221: 215–222. https://doi.org/10.1016/j.apcatb.2017.09.028
  • Maya-Johnson S, Gracia L, Longo E, Andres J, Leite ER. 2017. Synthesis of cuboctahedral CeO₂ nanoclusters and their assembly into cuboid nanoparticles by oriented attachment. ChemNanoMat, 3(4): 228–232. https://doi.org/10.1002/cnma.201700005
  • Muthamizh S, Suresh R, Giribabu K, Manigandan R, Praveen Kumar S, Munusamy S, Narayanan V. 2015. MnWO₄ nanocapsules: synthesis, characterization and its electrochemical sensing property. J Alloys Compd, 619: 601–609. https://doi.org/10.1016/j.jallcom.2014.09.049
  • Nagaraja K, Mallika B, Arunpandian M, Ravindran E, Tae Hwan O. 2025. Green synthesis of gold-decorated BaTiO₃-ZnO nanocomposites using Arabic gum polymer for efficient photocatalytic degradation of emerging textile dyes, antimicrobial, and toxicological evaluation. Int J Biol Macromol, 311: 143396. https://doi.org/10.1016/j.ijbiomac.2025.143396
  • Nezzari A, Medina S, Khane Y, Boublenza H, Guezzoul M, Zoukel A, Amrani B. 2025. Photocatalytic degradation of brilliant green dye using Cu₂NiSnS₄ thin films under ultraviolet irradiation. Inorg Chem Commun, 174: 114021. https://doi.org/10.1016/j.inoche.2025.114021
  • Nogami A, Suzuki T, Katsufuji T. 2008. Second harmonic generation from multiferroic MnWO₄. J Phys Soc Jpn, 77(11): 115001. https://doi.org/10.1143/JPSJ.77.115001
  • Pirhashemi M, Habibi-Yangjeh A. 2018. Fabrication of novel ZnO/MnWO₄ nanocomposites with p-n heterojunction: visible-light-induced photocatalysts with substantially improved activity and durability. J Mater Sci Technol, 34(10): 1891–1901. https://doi.org/10.1016/j.jmst.2018.01.014
  • Rao A, Cölfen H. 2017. Facet control in nanocrystal growth. In: Atwood JL (Ed.), Comprehensive Supramolecular Chemistry II. Elsevier, pp: 129–156. https://doi.org/10.1016/B978-0-12-409547-2.12638-1
  • Rastin H, Dell’Angelo D, Sayede A, Badawi M, Habibzadeh S. 2025. Green and sustainable metal-organic frameworks (MOFs) in wastewater treatment: a review. Environ Res, 282: 122087. https://doi.org/10.1016/j.envres.2025.122087
  • Sahoo S, Reddy GBT, Mahamallik P. 2024. Sunlight-assisted photocatalytic degradation of methyl red using g-C₃N₄ as metal-free photocatalyst. In: Mazumder D (ed.) Sustainable Advanced Technologies for Environmental Management. Springer Proc Earth Environ Sci. Springer, Cham. https://doi.org/10.1007/978-3-031-64006-3_1
  • Shalini S, Sasikala T, Tharani D, Venkatesh R, Muthulingam S. 2024. Novel green CQDs/ZnO binary photocatalyst synthesis for efficient visible light irradiation of organic dye degradation. J Mol Liq, 410: 125525. https://doi.org/10.1016/j.molliq.2024.125525
  • Shamshad J, Ur Rehman R. 2025. Innovative approaches to sustainable wastewater treatment: a comprehensive exploration of conventional and emerging technologies. Environ Sci Adv, 4(2): 189–222. https://doi.org/10.1039/D4VA00136B
  • Shivaganga GS, Parameswara P, Mallikarjunaswamy C, Kumar KCS, Soundarya TL, Nagaraju G, Ranganatha VL. 2023. Green, nonchemical route for the synthesis of MnWO₄ nanostructures: photocatalytic and electrochemical performance. J Mater Sci Mater Electron, 34(25): 1791. https://doi.org/10.1007/s10854-023-11190-3
  • Siahsahlan M, Mohammadi Aref S, Naghshara H, Azmayesh R. 2025. The effects of reduced graphene oxide amount on the photocatalytic performance of TiO₂ nanoparticles for hydrogen evolution. Int J Hydrogen Energy, 142: 318–329. https://doi.org/10.1016/j.ijhydene.2025.05.411
  • Vosoughifar M. 2017. Preparation, characterization, and morphological control of MnWO₄ nanoparticles through novel method and its photocatalyst application. J Mater Sci Mater Electron, 28(2): 2135–2140. https://doi.org/10.1007/s10854-016-5777-6
  • Wang G, Xu J, Sun Z, Zheng S. 2020. Surface functionalization of montmorillonite with chitosan and the role of surface properties on its adsorptive performance: a comparative study on mycotoxins adsorption. Langmuir, 36(10): 2601–2611. https://doi.org/10.1021/acs.langmuir.9b03673
  • Wu W, Qin W, He Y, Wu Y, Wu T. 2012. The effect of pH value on the synthesis and photocatalytic performance of MnWO₄ nanostructure by hydrothermal method. J Exp Nanosci, 7(4): 390–398. https://doi.org/10.1080/17458080.2010.533293
  • Xue W, He H, Zhu J, Yuan P. 2007. FTIR investigation of CTAB–Al–montmorillonite complexes. Spectrochim Acta A Mol Biomol Spectrosc, 67(3): 1030–1036. https://doi.org/10.1016/j.saa.2006.09.024
  • Zargazi M, Entezari MH. 2019. Sonochemical versus hydrothermal synthesis of bismuth tungstate nanostructures: photocatalytic, sonocatalytic and sonophotocatalytic activities. Ultrason Sonochem, 51: 1–11. https://doi.org/10.1016/j.ultsonch.2018.10.010
  • Zhang D, Otitoju TA, Ouyang Y, Shoparwe NF, Wang S, Li S. 2021. A review on metal ions modified TiO₂ for photocatalytic degradation of organic pollutants. Catalysts, 11(9): 1039. https://doi.org/10.3390/catal11091039
  • Zheng M, Zhang H, Gong X, Xu R, Xiao Y, Dong H, Liu Y. 2013. A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area. Nanoscale Res Lett, 8(1): 166. https://doi.org/10.1186/1556-276X-8-166
There are 40 citations in total.

Details

Primary Language English
Subjects Photochemistry, Catalysis and Mechanisms of Reactions, Inorganic Green Chemistry, Crystallography, Optical Properties of Materials
Journal Section Research Article
Authors

Mehmet Kayhan 0000-0002-4581-2657

Early Pub Date September 11, 2025
Publication Date September 15, 2025
Submission Date July 3, 2025
Acceptance Date September 8, 2025
Published in Issue Year 2025 Volume: 8 Issue: 5

Cite

APA Kayhan, M. (2025). Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate. Black Sea Journal of Engineering and Science, 8(5), 1577-1584. https://doi.org/10.34248/bsengineering.1733519
AMA Kayhan M. Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate. BSJ Eng. Sci. September 2025;8(5):1577-1584. doi:10.34248/bsengineering.1733519
Chicago Kayhan, Mehmet. “Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate”. Black Sea Journal of Engineering and Science 8, no. 5 (September 2025): 1577-84. https://doi.org/10.34248/bsengineering.1733519.
EndNote Kayhan M (September 1, 2025) Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate. Black Sea Journal of Engineering and Science 8 5 1577–1584.
IEEE M. Kayhan, “Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate”, BSJ Eng. Sci., vol. 8, no. 5, pp. 1577–1584, 2025, doi: 10.34248/bsengineering.1733519.
ISNAD Kayhan, Mehmet. “Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate”. Black Sea Journal of Engineering and Science 8/5 (September2025), 1577-1584. https://doi.org/10.34248/bsengineering.1733519.
JAMA Kayhan M. Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate. BSJ Eng. Sci. 2025;8:1577–1584.
MLA Kayhan, Mehmet. “Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate”. Black Sea Journal of Engineering and Science, vol. 8, no. 5, 2025, pp. 1577-84, doi:10.34248/bsengineering.1733519.
Vancouver Kayhan M. Enhanced Photocatalytic Degradation of Methyl Red Dye Via Hydrothermally Synthesized Manganese Tungstate. BSJ Eng. Sci. 2025;8(5):1577-84.

                            24890