Research Article
BibTex RIS Cite

Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması

Year 2025, Volume: 8 Issue: 6, 1697 - 1714, 15.11.2025
https://doi.org/10.34248/bsengineering.1644212

Abstract

Bu çalışma, meme kanseri teşhisinde kullanılan farklı DL modellerinin performanslarını karşılaştırarak en başarılı modelin belirlenmesini amaçlamaktadır. Meme kanseri, dünya genelinde en yaygın ve ölümcül kanser türlerinden biri olup, erken teşhis edilmesi hastaların sağkalım oranlarını önemli ölçüde artırmaktadır. Son yıllarda DL tabanlı modeller, tıbbi görüntü analizi alanında büyük ilerlemeler kaydetmiş ve özellikle histopatolojik görüntüler üzerinde yüksek doğruluk oranları elde edilerek teşhis sürecinde önemli bir rol oynamaya başlamıştır. Çalışmada, EfficientNet-Swin, VGG16, ResNet50 ve Hibrit CNN-LSTM-Quantum modelleri karşılaştırılmış ve bu modellerin sınıflandırma performansları kesinlik (Precision), duyarlılık (Recall), F1-Skoru, doğruluk (Accuracy) ve AUC gibi ölçütler kullanılarak değerlendirilmiştir. Elde edilen sonuçlar, EfficientNet-Swin modelinin %92 doğruluk ve %97 AUC değeri ile en yüksek başarı oranına ulaştığını göstermektedir. Transformer tabanlı bir model olan EfficientNet-Swin, geleneksel CNN modellerine kıyasla daha iyi genelleme kapasitesine ve güçlü öznitelik çıkarma yeteneğine sahiptir. Hibrit CNN-LSTM-Quantum modeli, DL ve kuantum hesaplama tekniklerini birleştirerek yenilikçi bir yaklaşım sunmaktadır. Bu model, özellikle zaman serisi analizi gerektiren biyomedikal görüntüleme uygulamalarında umut vadeden bir yöntem olarak öne çıkmıştır. VGG16 modeli, düşük yanlış pozitif oranı ile dikkat çekerken, ResNet50 modeli aşırı öğrenme riski nedeniyle ek optimizasyon gerektirmektedir. Çalışmadan elde edilen bulgular, transformer tabanlı modellerin geleneksel CNN mimarilerine kıyasla daha yüksek doğruluk ve genelleme kapasitesine sahip olduğunu göstermektedir. Özellikle EfficientNet-Swin modelinin, meme kanseri teşhisi için klinik kullanıma en uygun model olduğu belirlenmiştir. Gelecekteki çalışmalar, bu modellerin daha büyük ve çeşitli veri setleri üzerinde test edilerek klinik entegrasyonlarının sağlanmasına odaklanmalıdır. Ayrıca, kuantum hesaplama destekli hibrit modellerin geliştirilmesi, DL tabanlı teşhis sistemlerinin doğruluk ve verimliliğini daha da artırabilir.

References

  • Abraham H, Akhalwaya IY, Alexander T, vd. 2019. Qiskit: an open-source framework for quantum computing. IBM Research. URL: https://qiskit.org
  • Agliardi G, Grossi M, Pellen M, Prati E. 2022. Quantum integration of elementary particle processes. Phys Lett B. https://doi.org/10.1016/j.physletb.2022.137228
  • Akın E, Şahin ME. 2024. DL ve yapay sinir ağı modelleri üzerine bir inceleme. EMO Bilimsel Dergi, 14(1): 27-38.
  • Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. 2016. AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging, 35(5): 1313-1321. https://doi.org/10.1109/TMI.2016.2528120
  • Başara B, Soytutan Çağlar İ, Aygün A, Özdemir TA, Kulalı B, Uzun SB. 2019. Sağlık istatistikleri yıllığı. URL: https://sbsgm.saglik.gov.tr/Eklenti/40564/0/saglikistatistikleri-yilligi-2019.pdf (erişim tarihi: 10 Şubat 2025).
  • Biçici Y. 2023. DL ile mammogram görüntülerindeki lezyonların tespiti ve sınıflandırılması. YL tezi. Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Bilecik.
  • Brown J, Lee K. 2019. Deep learning in medical image analysis: challenges and applications. Springer.
  • Cengil E, Çınar A. 2020. Göğüs verileri metrikleri üzerinden kanser sınıflandırılması. DÜMF Müh Derg, 11(2): 513–519.
  • Chang J, Yu J, Han T, Chang H, Park E. 2017. A method for classifying medical images using transfer learning: a pilot study on histopathology of breast cancer. In: IEEE 19th Int Conf e-Health Netw Appl Serv, Oct 1-4, Dalian, China.
  • Dastagir M, Han D. 2024. Towards hybrid quantum-classical deep learning architecture for indoor-outdoor detection using QCNN-LSTM and cluster state signal processing. IEEE Signal Process Lett, 31: 2945-2949. https://doi.org/10.1109/LSP.2024.3480043
  • Dixit A, Mani A, Gorbachev S. 2024. Hybrid framework for medical image classification: integrating quantum DE and deep learning. In: 2024 IEEE Int Conf Intell Signal Process Effective Commun Technol, 1-6. https://doi.org/10.1109/INSPECT63485.2024.10896054
  • Dümen S, Kavalcı Yılmaz E, Adem K. 2024. Meyve suyu fabrikalarında limon kalite sınıflandırması için görüntü dönüştürücü ve swin dönüştürücü modellerinin performansı. Eur Food Res Technol, 250: 2291–2302. https://doi.org/10.1007/s00217-024-04537-5
  • Erdem E, Aydın T. 2021. Göğüs kanseri histopatolojik görüntü sınıflandırması. Bilisim Teknol Derg, 14(1): 87-94. https://doi.org/10.17671/gazibtd.746673
  • Gonzalez M, Patel R, Smith J. 2023. Performance metrics in deep learning: a comparative study. Int J Artif Intell, 45(2): 112-130.
  • Guang Y, Su-Ya C, Min N, Yuan-Hua L, Mei-Ling Z. 2023. Research on the construction method of hybrid quantum LSTM neural network for image classification. Acta Phys Sin, 72(5): 058901. https://doi.org/10.7498/aps.72.20221924
  • Gupta K, Chawla N. 2020. Analysis of histopathological images for prediction of breast cancer using traditional classifiers with pre-trained CNN. Procedia Comput Sci, 167: 878-889.
  • Güler A. 2024. Quantum algorithms for image processing: enhancing computational efficiency and accuracy in high-dimensional visual data analysis. Hum Comput Interact. https://doi.org/10.62802/hxc0ag94
  • Habek GC, Taşdemir S, Başçiftci F, Yılmaz A. 2024. Transfer DL teknikleri ile görüntü sınıflandırmada aktivasyon fonksiyonlarının performans üzerindeki etkisi. Afyon Kocatepe Univ Fen Muh Bilim Derg, 24(2): 294-307. https://doi.org/10.35414/akufemubid.1334098
  • Henkel C. 2021. Efficient large-scale image retrieval with deep feature orthogonality and hybrid-swin-transformers. URL: https://arxiv.org/abs/2110.03786 (erişim tarihi: 10 Şubat 2025).
  • Hernandez D, Patel S. 2020. Evaluating false negatives in medical diagnosis using machine learning models. J Med Inform, 38(4): 215-229.
  • Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput, 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hossin M, Sulaiman MN. 2015. A review on evaluation metrics for data classification evaluations. Int J Data Knowl Eng Process, 5(11): 1-11. https://doi.org/10.5121/ijdkp.2015.5201
  • Hua L, Zhuang S, Li D, Zhao J, Ma Y. 2019. Benign and malignant classification of mammogram images based on deep learning. Biomed Signal Process Control, 51: 347–354. https://doi.org/10.1016/j.bspc.2019.03.005
  • Hüseyin MM, Ali MŞ, Ahmed MM, Rakib MRH, Kona MA, Afrin S, İslam MK, Ahsan MM, Raj ŞMRH, Rahman MH. 2023. Explainable AI-based hybrid CNN-LSTM model for cardiovascular disease identification. Intell Med, 42: 1-15. https://doi.org/10.1016/j.imu.2023.101370
  • Kaddes M, Ayid YM, Elshewey AM, vd. 2025. LSTM modeline sahip hibrit CNN’ye dayalı meme kanseri sınıflandırması. Sci Rep, 15: 4409. https://doi.org/10.1038/s41598-025-88459-6
  • Kaggle. Breast histopathology images. URL: https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images (erişim tarihi: 10 Ocak 2025).
  • Karakurt M, İşeri İ. 2022. Patoloji görüntülerinin DL yöntemleri ile sınıflandırılması. Avrupa Bilim Teknol Derg, (33): 192-206. https://doi.org/10.31590/ejosat.1011091
  • Kausar T, Wang M, Idrees M, Lu Y. 2019. HWDCNN: multi-class recognition in breast histopathology with Haar wavelet decomposed image based convolution neural network. Biocybern Biomed Eng, 39(4): 967-982.
  • Kulkarni A, Gite S, Kulkarni A, Sonawani S. 2024. Bridging traditional and modern AI techniques for breast cancer histopathology. In: Proc 2024 Int Conf Intell Comput Emerg Commun Technol (ICEC), Nov 23-25, Guntur, India.
  • Kumar R, Zhang Y, Li H. 2021. Transfer learning and deep neural networks for breast cancer detection. IEEE J Biomed Health Inform, 40(5): 1342-1355.
  • Lakshmi Priya CV, Biju VG, Vinod BR, Ramachandran S. 2024. Deep learning approaches for breast cancer detection in histopathology images: a review. Cancer Biomark, 40(1): 1-25. https://doi.org/10.3233/CBM-230251
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436–444. https://doi.org/10.1038/nature14539
  • Li H, Zhuang S, Li D, Zhao J, Ma Y. 2019. Benign and malignant classification of mammogram images based on deep learning. Biomed Signal Process Control, 51: 347-354. https://doi.org/10.1016/j.bspc.2019.02.017
  • Mahmud MI, Mamun M, Abdelgawad A. 2023. A deep analysis of transfer learning based breast cancer detection using histopathology images. Electr Eng Syst Sci Image Video Process. https://doi.org/10.48550/arXiv.2304.05022
  • Mayfield J, El-Naqa I. 2024. Evaluation of VQC-LSTM for disability forecasting in multiple sclerosis using sequential multisequence MRI. Quantum Mach Intell, 6: 41. https://doi.org/10.1007/s42484-024-00171-2
  • Meva. Meme kanseri teşhis yöntemleri. URL: https://www.memekanseri.org.tr/meme-sagligi/meme-kanseri-teshis-yontemleri (erişim tarihi: 10 Ocak 2025).
  • Mridha MF, Hamid MA, Monowar MM, Keya AJ, Ohi AQ, Islam MR, Kim JM. 2021. Derin öğrenmeye dayalı meme kanseri teşhisine ilişkin kapsamlı bir araştırma. Cancers, 13(23): 1-20.
  • Nahid AA, Mehrabi MA, Kong Y. 2018. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. Biomed Res Int, 2018: 45.
  • Nahid AA, Mehrabi MA, Kong Y. 2018. Histopathological breast-cancer image classification using LSTM with transfer learning. In: Proc Int Conf Mach Learn Cybern, 1–5.
  • Nguyen P, Tran L, Wang T. 2021. The impact of imbalanced datasets on classification performance: a case study in medical imaging. Bioinform Comput Biol J, 29(3): 56-72.
  • Özgür SN, Bozkurt Keser S. 2021. Meme kanseri tümörlerinin DL algoritmaları ile sınıflandırılması. Turk Doga Fen Derg, 10(2): 212-222. https://doi.org/10.46810/tdfd.957618
  • Perez-Salinas A, Cervera-Lierta A, Gil-Fuster E, Latorre JI. 2020. Data re-uploading for a universal quantum classifier. Quantum, 4: 226. https://doi.org/10.22331/q-2020-02-06-226
  • Phyo P, Byun Y. 2021. Hybrid ensemble deep learning-based approach for time series energy prediction. Symmetry, 13(10): 19-42.
  • Ragab DA, Sharkas M, Marshall S, Ren J. 2021. A framework for breast cancer classification using deep learning CNNs. Inform Med Unlock, 23: 100551. https://doi.org/10.1016/j.imu.2021.100551
  • Rashmi R, Prasad K, Udupa CBK. 2021. Breast histopathological image analysis using image processing techniques for diagnostic purposes: a methodological review. J Med Syst, 46(1): 7.
  • Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü. Mamografide görüntü kalitesi. URL: https://hsgm.saglik.gov.tr/tr/kanser (erişim tarihi: 25 Ocak 2025).
  • Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü. Türkiye kanser istatistikleri. URL: https://hsgm.saglik.gov.tr/tr/kanser-istatistikleri (erişim tarihi: 25 Ocak 2025).
  • Saha M, Chakraborty C, Racoceanu D. 2018. Efficient deep learning model for mitosis detection using breast histopathology images. Comput Med Imaging Graph, 64: 29-40.
  • Schuld M, Sinayskiy I, Petruccione F. 2019. Machine learning with quantum computers. Springer. https://doi.org/10.1007/978-3-030-18545-4
  • Smith A, Johnson B, Wang C. 2020. Metrics for evaluating deep learning models in medical image classification. Comput Biol Med, 115: 56-67.
  • Spanhol FA, Oliveira LS, Cavalin PR, Petitjean C, Heutte L. 2017. Deep features for breast cancer histopathological image classification. In: Proc IEEE Int Conf Syst Man Cybern (SMC), Oct 5-8, Banff, Canada.
  • Spanhol FA, Oliveira LS, Petitjean C, Heutte L. 2016. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng, 63(7): 1455-1462.
  • Subasish M, Sarmistha M, Subhadarshini M, Ravindra JVR, Sachi NM. 2022. Evaluation of deep learning models for detecting breast cancer using histopathological mammogram images. Sustain Oper Comput, 3: 296-302.
  • Utku A. 2024. Hybrid CNN-LSTM model for accurate long-term and short-term temperature prediction: a case study for Bingöl and Tunceli. Int J Pure Appl Sci, 10(2): 550-562. https://doi.org/10.29132/ijpas.1548698
  • Utku F. 2024. Kuantum bilişim ve enerji uygulamaları. İstanbul: TeknoYay.
  • Wahab N, Khan A. 2020. Multifaceted fused-CNN based scoring of breast cancer whole-slide histopathology images. Appl Soft Comput, 97: 106121.
  • WHO. The global breast cancer initiative. URL: https://www.who.int/initiatives/global-breast-cancer-initiative (erişim tarihi: 10 Ocak 2025).
  • Xu J, Xiang L, Li Q, Gilmore H, Wu J, Tang J, Madabhushi A. 2016. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging, 35(1): 119–130. https://doi.org/10.1109/TMI.2015.2458702.
  • Yang Z, Ran L, Zhang S, Xia Y, Zhang Y. 2019. EMS-Net: ensemble of multiscale convolutional neural networks for classification of breast cancer histology images. Neurocomputing, 366: 46-53.
  • Zhang X, Chen L, Zhao M. 2022. Precision and recall trade-offs in deep learning-based medical diagnosis. Neural Netw, 56(7): 99-115.

Histopathologic Image Classification of Breast Cancer Using Deep Learning Algorithms

Year 2025, Volume: 8 Issue: 6, 1697 - 1714, 15.11.2025
https://doi.org/10.34248/bsengineering.1644212

Abstract

This research aims to compare the performance of different deep learning models used in breast cancer diagnosis to determine the most successful model. Breast cancer is one of the most common and deadly cancers worldwide, and early detection of breast cancer significantly increases the survival rate of patients. In recent years, deep learning-based models have made great progress in the field of medical image analysis and have started to play an important role in the diagnosis process, especially by achieving high accuracy rates on histopathological images. In this research, EfficientNet-Swin, VGG16, ResNet50 and Hybrid CNN-LSTM-Quantum models are compared and their classification performances are evaluated using metrics such as Precision, Recall, F1-Score, Accuracy and AUC. The results show that the EfficientNet-Swin model achieves the highest success rate with 92% accuracy and 97% ROC-AUC. As a transformer-based model, EfficientNet-Swin has better generalization capacity and strong feature extraction capability compared to traditional CNN models. The Hybrid CNN-LSTM-Quantum model offers an innovative approach by combining deep learning and quantum computing techniques. This model has emerged as a promising method, especially in biomedical imaging applications that require time series analysis. The VGG16 model is notable for its low false positive rate, while the ResNet50 model requires additional optimization due to the risk of overlearning. The findings of the study show that transformer-based models have higher accuracy and generalization capacity compared to traditional CNN architectures. In particular, the EfficientNet-Swin model was found to be the most suitable model for clinical use for breast cancer diagnosis. Future work should focus on testing these models on larger and more diverse datasets to ensure their clinical integration. Furthermore, the development of quantum computing-enabled hybrid models can further improve the accuracy and efficiency of deep learning-based diagnostic systems.

References

  • Abraham H, Akhalwaya IY, Alexander T, vd. 2019. Qiskit: an open-source framework for quantum computing. IBM Research. URL: https://qiskit.org
  • Agliardi G, Grossi M, Pellen M, Prati E. 2022. Quantum integration of elementary particle processes. Phys Lett B. https://doi.org/10.1016/j.physletb.2022.137228
  • Akın E, Şahin ME. 2024. DL ve yapay sinir ağı modelleri üzerine bir inceleme. EMO Bilimsel Dergi, 14(1): 27-38.
  • Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. 2016. AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging, 35(5): 1313-1321. https://doi.org/10.1109/TMI.2016.2528120
  • Başara B, Soytutan Çağlar İ, Aygün A, Özdemir TA, Kulalı B, Uzun SB. 2019. Sağlık istatistikleri yıllığı. URL: https://sbsgm.saglik.gov.tr/Eklenti/40564/0/saglikistatistikleri-yilligi-2019.pdf (erişim tarihi: 10 Şubat 2025).
  • Biçici Y. 2023. DL ile mammogram görüntülerindeki lezyonların tespiti ve sınıflandırılması. YL tezi. Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Bilecik.
  • Brown J, Lee K. 2019. Deep learning in medical image analysis: challenges and applications. Springer.
  • Cengil E, Çınar A. 2020. Göğüs verileri metrikleri üzerinden kanser sınıflandırılması. DÜMF Müh Derg, 11(2): 513–519.
  • Chang J, Yu J, Han T, Chang H, Park E. 2017. A method for classifying medical images using transfer learning: a pilot study on histopathology of breast cancer. In: IEEE 19th Int Conf e-Health Netw Appl Serv, Oct 1-4, Dalian, China.
  • Dastagir M, Han D. 2024. Towards hybrid quantum-classical deep learning architecture for indoor-outdoor detection using QCNN-LSTM and cluster state signal processing. IEEE Signal Process Lett, 31: 2945-2949. https://doi.org/10.1109/LSP.2024.3480043
  • Dixit A, Mani A, Gorbachev S. 2024. Hybrid framework for medical image classification: integrating quantum DE and deep learning. In: 2024 IEEE Int Conf Intell Signal Process Effective Commun Technol, 1-6. https://doi.org/10.1109/INSPECT63485.2024.10896054
  • Dümen S, Kavalcı Yılmaz E, Adem K. 2024. Meyve suyu fabrikalarında limon kalite sınıflandırması için görüntü dönüştürücü ve swin dönüştürücü modellerinin performansı. Eur Food Res Technol, 250: 2291–2302. https://doi.org/10.1007/s00217-024-04537-5
  • Erdem E, Aydın T. 2021. Göğüs kanseri histopatolojik görüntü sınıflandırması. Bilisim Teknol Derg, 14(1): 87-94. https://doi.org/10.17671/gazibtd.746673
  • Gonzalez M, Patel R, Smith J. 2023. Performance metrics in deep learning: a comparative study. Int J Artif Intell, 45(2): 112-130.
  • Guang Y, Su-Ya C, Min N, Yuan-Hua L, Mei-Ling Z. 2023. Research on the construction method of hybrid quantum LSTM neural network for image classification. Acta Phys Sin, 72(5): 058901. https://doi.org/10.7498/aps.72.20221924
  • Gupta K, Chawla N. 2020. Analysis of histopathological images for prediction of breast cancer using traditional classifiers with pre-trained CNN. Procedia Comput Sci, 167: 878-889.
  • Güler A. 2024. Quantum algorithms for image processing: enhancing computational efficiency and accuracy in high-dimensional visual data analysis. Hum Comput Interact. https://doi.org/10.62802/hxc0ag94
  • Habek GC, Taşdemir S, Başçiftci F, Yılmaz A. 2024. Transfer DL teknikleri ile görüntü sınıflandırmada aktivasyon fonksiyonlarının performans üzerindeki etkisi. Afyon Kocatepe Univ Fen Muh Bilim Derg, 24(2): 294-307. https://doi.org/10.35414/akufemubid.1334098
  • Henkel C. 2021. Efficient large-scale image retrieval with deep feature orthogonality and hybrid-swin-transformers. URL: https://arxiv.org/abs/2110.03786 (erişim tarihi: 10 Şubat 2025).
  • Hernandez D, Patel S. 2020. Evaluating false negatives in medical diagnosis using machine learning models. J Med Inform, 38(4): 215-229.
  • Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput, 9(8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hossin M, Sulaiman MN. 2015. A review on evaluation metrics for data classification evaluations. Int J Data Knowl Eng Process, 5(11): 1-11. https://doi.org/10.5121/ijdkp.2015.5201
  • Hua L, Zhuang S, Li D, Zhao J, Ma Y. 2019. Benign and malignant classification of mammogram images based on deep learning. Biomed Signal Process Control, 51: 347–354. https://doi.org/10.1016/j.bspc.2019.03.005
  • Hüseyin MM, Ali MŞ, Ahmed MM, Rakib MRH, Kona MA, Afrin S, İslam MK, Ahsan MM, Raj ŞMRH, Rahman MH. 2023. Explainable AI-based hybrid CNN-LSTM model for cardiovascular disease identification. Intell Med, 42: 1-15. https://doi.org/10.1016/j.imu.2023.101370
  • Kaddes M, Ayid YM, Elshewey AM, vd. 2025. LSTM modeline sahip hibrit CNN’ye dayalı meme kanseri sınıflandırması. Sci Rep, 15: 4409. https://doi.org/10.1038/s41598-025-88459-6
  • Kaggle. Breast histopathology images. URL: https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images (erişim tarihi: 10 Ocak 2025).
  • Karakurt M, İşeri İ. 2022. Patoloji görüntülerinin DL yöntemleri ile sınıflandırılması. Avrupa Bilim Teknol Derg, (33): 192-206. https://doi.org/10.31590/ejosat.1011091
  • Kausar T, Wang M, Idrees M, Lu Y. 2019. HWDCNN: multi-class recognition in breast histopathology with Haar wavelet decomposed image based convolution neural network. Biocybern Biomed Eng, 39(4): 967-982.
  • Kulkarni A, Gite S, Kulkarni A, Sonawani S. 2024. Bridging traditional and modern AI techniques for breast cancer histopathology. In: Proc 2024 Int Conf Intell Comput Emerg Commun Technol (ICEC), Nov 23-25, Guntur, India.
  • Kumar R, Zhang Y, Li H. 2021. Transfer learning and deep neural networks for breast cancer detection. IEEE J Biomed Health Inform, 40(5): 1342-1355.
  • Lakshmi Priya CV, Biju VG, Vinod BR, Ramachandran S. 2024. Deep learning approaches for breast cancer detection in histopathology images: a review. Cancer Biomark, 40(1): 1-25. https://doi.org/10.3233/CBM-230251
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436–444. https://doi.org/10.1038/nature14539
  • Li H, Zhuang S, Li D, Zhao J, Ma Y. 2019. Benign and malignant classification of mammogram images based on deep learning. Biomed Signal Process Control, 51: 347-354. https://doi.org/10.1016/j.bspc.2019.02.017
  • Mahmud MI, Mamun M, Abdelgawad A. 2023. A deep analysis of transfer learning based breast cancer detection using histopathology images. Electr Eng Syst Sci Image Video Process. https://doi.org/10.48550/arXiv.2304.05022
  • Mayfield J, El-Naqa I. 2024. Evaluation of VQC-LSTM for disability forecasting in multiple sclerosis using sequential multisequence MRI. Quantum Mach Intell, 6: 41. https://doi.org/10.1007/s42484-024-00171-2
  • Meva. Meme kanseri teşhis yöntemleri. URL: https://www.memekanseri.org.tr/meme-sagligi/meme-kanseri-teshis-yontemleri (erişim tarihi: 10 Ocak 2025).
  • Mridha MF, Hamid MA, Monowar MM, Keya AJ, Ohi AQ, Islam MR, Kim JM. 2021. Derin öğrenmeye dayalı meme kanseri teşhisine ilişkin kapsamlı bir araştırma. Cancers, 13(23): 1-20.
  • Nahid AA, Mehrabi MA, Kong Y. 2018. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. Biomed Res Int, 2018: 45.
  • Nahid AA, Mehrabi MA, Kong Y. 2018. Histopathological breast-cancer image classification using LSTM with transfer learning. In: Proc Int Conf Mach Learn Cybern, 1–5.
  • Nguyen P, Tran L, Wang T. 2021. The impact of imbalanced datasets on classification performance: a case study in medical imaging. Bioinform Comput Biol J, 29(3): 56-72.
  • Özgür SN, Bozkurt Keser S. 2021. Meme kanseri tümörlerinin DL algoritmaları ile sınıflandırılması. Turk Doga Fen Derg, 10(2): 212-222. https://doi.org/10.46810/tdfd.957618
  • Perez-Salinas A, Cervera-Lierta A, Gil-Fuster E, Latorre JI. 2020. Data re-uploading for a universal quantum classifier. Quantum, 4: 226. https://doi.org/10.22331/q-2020-02-06-226
  • Phyo P, Byun Y. 2021. Hybrid ensemble deep learning-based approach for time series energy prediction. Symmetry, 13(10): 19-42.
  • Ragab DA, Sharkas M, Marshall S, Ren J. 2021. A framework for breast cancer classification using deep learning CNNs. Inform Med Unlock, 23: 100551. https://doi.org/10.1016/j.imu.2021.100551
  • Rashmi R, Prasad K, Udupa CBK. 2021. Breast histopathological image analysis using image processing techniques for diagnostic purposes: a methodological review. J Med Syst, 46(1): 7.
  • Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü. Mamografide görüntü kalitesi. URL: https://hsgm.saglik.gov.tr/tr/kanser (erişim tarihi: 25 Ocak 2025).
  • Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü. Türkiye kanser istatistikleri. URL: https://hsgm.saglik.gov.tr/tr/kanser-istatistikleri (erişim tarihi: 25 Ocak 2025).
  • Saha M, Chakraborty C, Racoceanu D. 2018. Efficient deep learning model for mitosis detection using breast histopathology images. Comput Med Imaging Graph, 64: 29-40.
  • Schuld M, Sinayskiy I, Petruccione F. 2019. Machine learning with quantum computers. Springer. https://doi.org/10.1007/978-3-030-18545-4
  • Smith A, Johnson B, Wang C. 2020. Metrics for evaluating deep learning models in medical image classification. Comput Biol Med, 115: 56-67.
  • Spanhol FA, Oliveira LS, Cavalin PR, Petitjean C, Heutte L. 2017. Deep features for breast cancer histopathological image classification. In: Proc IEEE Int Conf Syst Man Cybern (SMC), Oct 5-8, Banff, Canada.
  • Spanhol FA, Oliveira LS, Petitjean C, Heutte L. 2016. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng, 63(7): 1455-1462.
  • Subasish M, Sarmistha M, Subhadarshini M, Ravindra JVR, Sachi NM. 2022. Evaluation of deep learning models for detecting breast cancer using histopathological mammogram images. Sustain Oper Comput, 3: 296-302.
  • Utku A. 2024. Hybrid CNN-LSTM model for accurate long-term and short-term temperature prediction: a case study for Bingöl and Tunceli. Int J Pure Appl Sci, 10(2): 550-562. https://doi.org/10.29132/ijpas.1548698
  • Utku F. 2024. Kuantum bilişim ve enerji uygulamaları. İstanbul: TeknoYay.
  • Wahab N, Khan A. 2020. Multifaceted fused-CNN based scoring of breast cancer whole-slide histopathology images. Appl Soft Comput, 97: 106121.
  • WHO. The global breast cancer initiative. URL: https://www.who.int/initiatives/global-breast-cancer-initiative (erişim tarihi: 10 Ocak 2025).
  • Xu J, Xiang L, Li Q, Gilmore H, Wu J, Tang J, Madabhushi A. 2016. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging, 35(1): 119–130. https://doi.org/10.1109/TMI.2015.2458702.
  • Yang Z, Ran L, Zhang S, Xia Y, Zhang Y. 2019. EMS-Net: ensemble of multiscale convolutional neural networks for classification of breast cancer histology images. Neurocomputing, 366: 46-53.
  • Zhang X, Chen L, Zhao M. 2022. Precision and recall trade-offs in deep learning-based medical diagnosis. Neural Netw, 56(7): 99-115.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Ejder Ertürkmen 0000-0001-5961-6326

Ali Öter 0000-0002-9546-0602

Early Pub Date September 11, 2025
Publication Date November 15, 2025
Submission Date February 21, 2025
Acceptance Date August 26, 2025
Published in Issue Year 2025 Volume: 8 Issue: 6

Cite

APA Ertürkmen, E., & Öter, A. (2025). Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması. Black Sea Journal of Engineering and Science, 8(6), 1697-1714. https://doi.org/10.34248/bsengineering.1644212
AMA Ertürkmen E, Öter A. Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması. BSJ Eng. Sci. November 2025;8(6):1697-1714. doi:10.34248/bsengineering.1644212
Chicago Ertürkmen, Ejder, and Ali Öter. “Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması”. Black Sea Journal of Engineering and Science 8, no. 6 (November 2025): 1697-1714. https://doi.org/10.34248/bsengineering.1644212.
EndNote Ertürkmen E, Öter A (November 1, 2025) Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması. Black Sea Journal of Engineering and Science 8 6 1697–1714.
IEEE E. Ertürkmen and A. Öter, “Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması”, BSJ Eng. Sci., vol. 8, no. 6, pp. 1697–1714, 2025, doi: 10.34248/bsengineering.1644212.
ISNAD Ertürkmen, Ejder - Öter, Ali. “Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması”. Black Sea Journal of Engineering and Science 8/6 (November2025), 1697-1714. https://doi.org/10.34248/bsengineering.1644212.
JAMA Ertürkmen E, Öter A. Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması. BSJ Eng. Sci. 2025;8:1697–1714.
MLA Ertürkmen, Ejder and Ali Öter. “Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması”. Black Sea Journal of Engineering and Science, vol. 8, no. 6, 2025, pp. 1697-14, doi:10.34248/bsengineering.1644212.
Vancouver Ertürkmen E, Öter A. Derin Öğrenme Algoritmalarıyla Meme Kanserinin Histopatolojik Görüntü Sınıflandırması. BSJ Eng. Sci. 2025;8(6):1697-714.

                            24890