Password hashes and key derivation functions (KDFs) are central to authentication and cryptographic security schemes crafted to defend user credentials from brute-force attacks and unauthorized access. Password hashing algorithms, for example PBKDF2, bcrypt, or scrypt, are very popular today, but are lacking in the face of modern hardware acceleration, parallel processing, and advanced cryptanalytic attacks. To contest these shortcomings, the Password Hashing Competition (PHC) was started in 2013 and had 22 candidates for functions for hashing passwords. After thorough evaluation, 9 finalists were selected based on how secure, fast, memory-friendly, flexible, and efficient these functions were. This study evaluates the nine PHC finalists—Argon2, battcrypt, Catena, Lyra2, MAKWA, Parallel, POMELO, Pufferfish, and yescrypt—through survey findings and performance benchmarks. We have evaluated these functions from an architectural standpoint and studied their security features, memory hardness, performance trade-off, and practical usage. We also compare these finalists with traditional password hashing functions to highlight their advantages and limitations. We also investigate the post-quantum assumption for password hashing – the effectiveness of these functions against quantum assaults, their position in a new cryptography set, and the role of peppering as an additional security measure. In addition, we perform a comprehensive compliance mapping of the PHC finalists against major global standards and regulations such as NIST SP 800-63B, OWASP ASVS, PCI DSS, GDPR, KVKK, and ISO/IEC 27001, highlighting their practical suitability for secure deployment in regulated environments. Finally, we provide usage recommendations for these functions for web authentication, KDFs, and embedded platforms. This paper serves as a reference for researchers, developers, and security engineers, while also introducing a compliance-aware, post-quantum-ready framework that bridges cryptographic design with regulatory and deployment needs.
Ethics committee approval was not required for this study because there was no study on animals or humans.
Password hashes and key derivation functions (KDFs) are central to authentication and cryptographic security schemes crafted to defend user credentials from brute-force attacks and unauthorized access. Password hashing algorithms, for example PBKDF2, bcrypt, or scrypt, are very popular today, but are lacking in the face of modern hardware acceleration, parallel processing, and advanced cryptanalytic attacks. To contest these shortcomings, the Password Hashing Competition (PHC) was started in 2013 and had 22 candidates for functions for hashing passwords. After thorough evaluation, 9 finalists were selected based on how secure, fast, memory-friendly, flexible, and efficient these functions were. This study evaluates the nine PHC finalists—Argon2, battcrypt, Catena, Lyra2, MAKWA, Parallel, POMELO, Pufferfish, and yescrypt—through survey findings and performance benchmarks. We have evaluated these functions from an architectural standpoint and studied their security features, memory hardness, performance trade-off, and practical usage. We also compare these finalists with traditional password hashing functions to highlight their advantages and limitations. We also investigate the post-quantum assumption for password hashing – the effectiveness of these functions against quantum assaults, their position in a new cryptography set, and the role of peppering as an additional security measure. In addition, we perform a comprehensive compliance mapping of the PHC finalists against major global standards and regulations such as NIST SP 800-63B, OWASP ASVS, PCI DSS, GDPR, KVKK, and ISO/IEC 27001, highlighting their practical suitability for secure deployment in regulated environments. Finally, we provide usage recommendations for these functions for web authentication, KDFs, and embedded platforms. This paper serves as a reference for researchers, developers, and security engineers, while also introducing a compliance-aware, post-quantum-ready framework that bridges cryptographic design with regulatory and deployment needs.
Ethics committee approval was not required for this study because there was no study on animals or humans.
| Primary Language | English |
|---|---|
| Subjects | Information Security Management, Information Systems (Other) |
| Journal Section | Research Article |
| Authors | |
| Early Pub Date | November 12, 2025 |
| Publication Date | November 15, 2025 |
| Submission Date | April 4, 2025 |
| Acceptance Date | September 26, 2025 |
| Published in Issue | Year 2025 Volume: 8 Issue: 6 |