Research Article
BibTex RIS Cite

Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı ve Mekanik Özelliklerinin Araştırılması

Year 2025, Volume: 8 Issue: 6, 1748 - 1758, 15.11.2025
https://doi.org/10.34248/bsengineering.1676045

Abstract

Günümüzde önemi artan rafinerilerin ana bölümlerinin başında sıcak proses geçiş hatları (SPG) yer almaktadır. SPG’ler rafinerilerde ham petrol vakum distilasyon ünitesi ve diğer ünitelerde bulunan vakum hatları olarak da isimlendirilen hatlardır. SPG hatlarında meydana gelebilecek hatalar insan ve çevre üzerinde olumsuz etkilerin oluşacağı büyük endüstriyel kazalara neden olmaktadır. Bu hatlarda sızdırmazlığın sağlanması, ısıl genleşme problemlerinin önüne geçilebilmesi ve ekonomik bir bağlantı yöntemi olduğu için birleştirme işlemlerinde kaynak yöntemleri tercih edilmektedir. SPG hatlarında ortalama 14 MPa basınç altında ve yaklaşık 640 °C sıcaklıktan 30 °C sıcaklığa kadar akışkan transferinin sağlandığı fırın giriş çıkış hatları yer almaktadır. Fırın içinde SS 316L paslanmaz çelik, fırın dışında ASTM A106 Grade B düşük karbonlu çelik kullanılmaktadır. Bu çalışma kapsamında fırın giriş-çıkış hatlarında TİG kaynak yöntemi ile birleştirilen bağlantılar incelenmiştir. Endüstriyel uygulamalarda sıklıkla tercih edilen parametrelerin hangilerinin en güvenli kaynak bağlantılarını meydana getirdiği imalatçılar tarafından belirsizliğini korumaktadır. Bu çalışmada deneyler yapılarak en güvenli kaynak parametreleri tespit edilmiştir. En iyi sonuçlar; eğme deneyinde kaynak bölgesinde çatlak oluşmaması ve 678 MPa çekme mukavemeti ile S6 nolu numuneden elde edilmiştir. S6 nolu numune kök, sıcak, dolgu ve kapak pasolarının sırasıyla 90, 150, 165 ve 170 A akımda gerçekleştirilen numunedir.

Ethical Statement

Etik kurul raporunna ihtiyaç bulunmamaktadır.

Thanks

Yazarlar Tüv Austria Sıla Kalite Kontrol Muayene Gözetim ve Denetim Hizmetleri San. ve Tic. Ltd. Şti, Tahribatlı Test Laboratuvarına test süreçlerinin tamamı için verdikleri destek ve sonsuz hoşgörüleri için teşekkür eder.

References

  • Abdul Khadeer SK, Kumar BR, Kumar AS. 2020. Evaluation of friction welded dissimilar pipe joints between AISI 4140 and ASTM A 106 Grade B steels used in deep exploration drilling. J Manuf Process, 56: 197-205.
  • Althouse AD, Turnquist CH, Bowditch WA, Bowditch KE. 1992. Gas tungsten arc welding, modern welding, The Goodheart-Wilcox Company Inc, A.B.D., 327-328.
  • Anonymous. 2024. Material property data. Metal & Alloy Comp. URL:https://www.matweb.com/search/DataSheet.aspx?MatGUID=2e483c6b9ffc4efda0dc0afdc63a09c8&ckck=1 (accessed date: 25 December 2024).
  • Balaji C, Kumar SA, Sathish R. 2012. Evaluation of mechanical properties of SS316L weldments using tungsten inert gas welding. Int J Eng Sci Technol, 4(5): 2053.
  • Brau JF, Morandin M, Berntsson T. 2013. Hydrogen for oil refining via biomass indirect steam gasification: energy and environmental targets. Clean Technol Environ Policy. 15(3): 501-512.
  • Chen HC, Ng FL, Du Z. 2019. Hybrid laser-TIG welding of dissimilar ferrous steels: 10 mm thick low carbon steel to 304 austenitic stainless steel. J Man Process, 47: 324-336.
  • Clover D, Kinsella B, Pejcic B, De Marco R. 2005. The influence of microstructure on the corrosion rate of various carbon steels. J Appl Electrochem, 35: 139-149.
  • Doğan B. 2015. Process safety in oil refineries: Semi-quantitative Hazop in Vacuum Distillation Column Case. MSc thesis, Yıldırım Beyazıt University, Institute of Health Sciences, Occupational Health and Safety, Ankara, Türkiye pp: 15.
  • Gadewar SP, Swaminadhan P, Harkare MG, Gawande SH. 2010, Experimental ınvestigation of weld characteristics for a single pass TIG welding with SS304. Int J Eng Sci Technol, 2(8): 3676-3686.
  • Gourd ML. 1995. Principles of welding technology. In: British Library Cataloguing in Publication Data, London, UK, pp: 30-32.
  • Juang SC, Tarng YS. 2002. Process parameter selection for optimising the weld pool geometry in the tungsten inert gas welding of stainless steel, J Mater Process Technol, 122(1): 33-37.
  • Modenesi PJ, Apolinario ER, Pereira IM. 2000. TIG welding with single-component fluxes, J Mater Process Technol, 99: 260-265.
  • Morsiya C, Sutaria M, Patel S. 2021. Influence of the heat treatment on the surface bioactivity of investment cast SS 316L. Mater Today Proc, 38: 2878-2884.
  • Nakata K, Oishi M, Koshiishi M, Hashimoto T, Anzai H, Saito Y, Kono W. 2002. Re-Weldability of Neutron-Irradiated stainless steels studied by multi-pass TIG Welding, J Nucl Mater, 307-311: 1578-1583.
  • Svensson E, Morandin M, Harvey S, Papadokonstantakis S. 2020. Studying the role of system aggregation in energy targeting: A case study of a swedish oil refinery. Energies, 13(4): 958
  • Wu C S, Ushi M, Tanaka M. 1997. Analysis of the TIG welding arc behavior, Comput Mater Sci, 7(3): 308-314.
  • Wu Y, Cai Y, Sun D, Zhu J, Wu Y. 2015. Microstructure and properties of high-power laser welding of SUS304 to SA553 for cryogenic applications. J Mater Process Technol, 225: 56-66.
  • Xu H, Xu MJ, Yu C, Lu H, Wei X, Chen JM, Xu JJ. 2017. Effect of the microstructure in unmixed zone on corrosion behavior of 439 tube/308L tube-sheet welding joint. J Mater Process Technol, 240: 162-167.
  • Yingsamphancharoen T, Srisuwan N, Rodchanarowan A. 2016. The electrochemical investigation of the corrosion rates of welded pipe ASTM A106 grade B. Metals, 6(9): 207.

Investigation of Connection Microstructure and Mechanical Properties in High Pressure Hot Process Transition Lines

Year 2025, Volume: 8 Issue: 6, 1748 - 1758, 15.11.2025
https://doi.org/10.34248/bsengineering.1676045

Abstract

Hot process transition lines (HPTLs) are among the most important parts of refineries, with their increasing importance today. HPTLs are also known as vacuum lines located in the crude oil vacuum distillation unit and other units within refineries. Failures in HPT lines can lead to major industrial accidents that can have adverse effects on humans and the environment. Welding is preferred in joining processes in these lines because it ensures leak-TİGhtness, prevents thermal expansion problems, and is an economical joining method. HPT lines include furnace inlet and outlet lines, where fluid transfer occurs from approximately 640°C to 30°C under an average pressure of 14 MPa. SS 316L stainless steel is used inside the furnace, and ASTM A106 Grade B low-carbon steel is used outside the furnace. In this study, joints joined by TİG welding in furnace inlet and outlet lines were invesTİGated. It remains unclear by manufacturers which of the frequently preferred parameters in industrial applications create the safest welded joints. In this study, the safest welding parameters were determined through experiments. The best results were; No cracks were formed in the weld area in the bending test and a tensile strength of 678 MPa was obtained from sample S6. Sample S6 is the sample in which the root, hot, filler and cover passes were performed at 90, 150, 165 and 170 A currents, respectively.

References

  • Abdul Khadeer SK, Kumar BR, Kumar AS. 2020. Evaluation of friction welded dissimilar pipe joints between AISI 4140 and ASTM A 106 Grade B steels used in deep exploration drilling. J Manuf Process, 56: 197-205.
  • Althouse AD, Turnquist CH, Bowditch WA, Bowditch KE. 1992. Gas tungsten arc welding, modern welding, The Goodheart-Wilcox Company Inc, A.B.D., 327-328.
  • Anonymous. 2024. Material property data. Metal & Alloy Comp. URL:https://www.matweb.com/search/DataSheet.aspx?MatGUID=2e483c6b9ffc4efda0dc0afdc63a09c8&ckck=1 (accessed date: 25 December 2024).
  • Balaji C, Kumar SA, Sathish R. 2012. Evaluation of mechanical properties of SS316L weldments using tungsten inert gas welding. Int J Eng Sci Technol, 4(5): 2053.
  • Brau JF, Morandin M, Berntsson T. 2013. Hydrogen for oil refining via biomass indirect steam gasification: energy and environmental targets. Clean Technol Environ Policy. 15(3): 501-512.
  • Chen HC, Ng FL, Du Z. 2019. Hybrid laser-TIG welding of dissimilar ferrous steels: 10 mm thick low carbon steel to 304 austenitic stainless steel. J Man Process, 47: 324-336.
  • Clover D, Kinsella B, Pejcic B, De Marco R. 2005. The influence of microstructure on the corrosion rate of various carbon steels. J Appl Electrochem, 35: 139-149.
  • Doğan B. 2015. Process safety in oil refineries: Semi-quantitative Hazop in Vacuum Distillation Column Case. MSc thesis, Yıldırım Beyazıt University, Institute of Health Sciences, Occupational Health and Safety, Ankara, Türkiye pp: 15.
  • Gadewar SP, Swaminadhan P, Harkare MG, Gawande SH. 2010, Experimental ınvestigation of weld characteristics for a single pass TIG welding with SS304. Int J Eng Sci Technol, 2(8): 3676-3686.
  • Gourd ML. 1995. Principles of welding technology. In: British Library Cataloguing in Publication Data, London, UK, pp: 30-32.
  • Juang SC, Tarng YS. 2002. Process parameter selection for optimising the weld pool geometry in the tungsten inert gas welding of stainless steel, J Mater Process Technol, 122(1): 33-37.
  • Modenesi PJ, Apolinario ER, Pereira IM. 2000. TIG welding with single-component fluxes, J Mater Process Technol, 99: 260-265.
  • Morsiya C, Sutaria M, Patel S. 2021. Influence of the heat treatment on the surface bioactivity of investment cast SS 316L. Mater Today Proc, 38: 2878-2884.
  • Nakata K, Oishi M, Koshiishi M, Hashimoto T, Anzai H, Saito Y, Kono W. 2002. Re-Weldability of Neutron-Irradiated stainless steels studied by multi-pass TIG Welding, J Nucl Mater, 307-311: 1578-1583.
  • Svensson E, Morandin M, Harvey S, Papadokonstantakis S. 2020. Studying the role of system aggregation in energy targeting: A case study of a swedish oil refinery. Energies, 13(4): 958
  • Wu C S, Ushi M, Tanaka M. 1997. Analysis of the TIG welding arc behavior, Comput Mater Sci, 7(3): 308-314.
  • Wu Y, Cai Y, Sun D, Zhu J, Wu Y. 2015. Microstructure and properties of high-power laser welding of SUS304 to SA553 for cryogenic applications. J Mater Process Technol, 225: 56-66.
  • Xu H, Xu MJ, Yu C, Lu H, Wei X, Chen JM, Xu JJ. 2017. Effect of the microstructure in unmixed zone on corrosion behavior of 439 tube/308L tube-sheet welding joint. J Mater Process Technol, 240: 162-167.
  • Yingsamphancharoen T, Srisuwan N, Rodchanarowan A. 2016. The electrochemical investigation of the corrosion rates of welded pipe ASTM A106 grade B. Metals, 6(9): 207.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Resource Technologies, Material Design and Behaviors
Journal Section Research Article
Authors

Serdar Mercan 0000-0002-1225-8290

Arslan Kaptan 0000-0002-2431-9329

Early Pub Date November 12, 2025
Publication Date November 15, 2025
Submission Date April 14, 2025
Acceptance Date September 19, 2025
Published in Issue Year 2025 Volume: 8 Issue: 6

Cite

APA Mercan, S., & Kaptan, A. (2025). Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı ve Mekanik Özelliklerinin Araştırılması. Black Sea Journal of Engineering and Science, 8(6), 1748-1758. https://doi.org/10.34248/bsengineering.1676045
AMA Mercan S, Kaptan A. Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı ve Mekanik Özelliklerinin Araştırılması. BSJ Eng. Sci. November 2025;8(6):1748-1758. doi:10.34248/bsengineering.1676045
Chicago Mercan, Serdar, and Arslan Kaptan. “Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı Ve Mekanik Özelliklerinin Araştırılması”. Black Sea Journal of Engineering and Science 8, no. 6 (November 2025): 1748-58. https://doi.org/10.34248/bsengineering.1676045.
EndNote Mercan S, Kaptan A (November 1, 2025) Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı ve Mekanik Özelliklerinin Araştırılması. Black Sea Journal of Engineering and Science 8 6 1748–1758.
IEEE S. Mercan and A. Kaptan, “Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı ve Mekanik Özelliklerinin Araştırılması”, BSJ Eng. Sci., vol. 8, no. 6, pp. 1748–1758, 2025, doi: 10.34248/bsengineering.1676045.
ISNAD Mercan, Serdar - Kaptan, Arslan. “Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı Ve Mekanik Özelliklerinin Araştırılması”. Black Sea Journal of Engineering and Science 8/6 (November2025), 1748-1758. https://doi.org/10.34248/bsengineering.1676045.
JAMA Mercan S, Kaptan A. Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı ve Mekanik Özelliklerinin Araştırılması. BSJ Eng. Sci. 2025;8:1748–1758.
MLA Mercan, Serdar and Arslan Kaptan. “Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı Ve Mekanik Özelliklerinin Araştırılması”. Black Sea Journal of Engineering and Science, vol. 8, no. 6, 2025, pp. 1748-5, doi:10.34248/bsengineering.1676045.
Vancouver Mercan S, Kaptan A. Yüksek Basınçlı Sıcak Proses Geçiş Hatlarında Bağlantı Mikroyapı ve Mekanik Özelliklerinin Araştırılması. BSJ Eng. Sci. 2025;8(6):1748-5.

                            24890