Research Article
BibTex RIS Cite

Effect of Graphene Addition on Compressive Strength in Open-Pore Hydroxyapatite Foam Composites

Year 2025, Volume: 8 Issue: 6, 1774 - 1779, 15.11.2025
https://doi.org/10.34248/bsengineering.1753133

Abstract

In this study, open porous hydroxyapatite (HA) foam composites were produced via the sponge template method for use in biomedical applications. Graphene (Gr) was added to the HA matrix at rates of 0.1, 0.3, 0.5, and 1 wt% to investigate its effects on structure and performance after sintering. The samples were sintered at 1300°C for 2 hours, and their bulk density, porosity, compressive strength, and microstructural properties were evaluated. Graphene addition had a significant effect on the structural integrity and mechanical properties of the HA foams. In particular, the sample with 0.3 wt% Gr achieved the highest density (0.768 g/cm³), lowest porosity (75%), and highest compressive strength (~0.152 MPa). This value corresponds to an approximately 2.5-fold increase in strength compared to pure HA foam. However, with a 1 wt% Gr addition, density and strength values decreased, while porosity increased. This is attributed to the high aggregation of graphene, leading to micropore formation. SEM-EDS images revealed a homogeneous distribution of 0.3 wt% Gr within the composite structure.

References

  • Avcı Ş. 2023. Preparation and characterization of porous hydroxyapatite reinforced with hydroxyapatite whiskers, JANSET, 3 (1): 1–6.
  • Baradaran S, Moghaddam E, Bahman NT, Basirun WJ, Mehrali M, Sookhakian M. 2015. Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. Mater Sci Eng C Mater Biol Appl, 49: 656–668.
  • Bertolla L, Dlouhý I, Boccaccini AR. 2014. Preparation and characterization of Bioglass®-based scaffolds reinforced by poly-vinyl alcohol/microfibrillated cellulose composite coating. J Eur Ceram, 34(14): 3379–3387.
  • Çakmak S. 2015. Development of hydroxyapatite/peptide amphiphile based nanocomposite scaffolds for bone tissue repair. PhD thesis, Hacettepe University, Institute of Science, Ankara, Türkiye, pp:183.
  • Dadaev R. 2019. Grafen reinforced calcium phosphate based ceramic foam materials artificial bone purpose production and characterization. MSc thesis, Ondokuz Mayis University, Institute of Science, Samsun, Türkiye, pp:70.
  • Dadaev R, Gürbüz M. 2019. Optimization of process parameters for porous artificial bone. IJMSIT, 3: 28-30.
  • Evis Z. 2011. Çeşitli iyonlar eklenmiş nano-hidroksiapatitler: üretim yöntemleri, iç yapı, mekanik ve biyouyumluluk özellikleri yönlerinden incelenmesi. IJERAD, 3 (1):55–65.
  • Gerhardt LC, Boccaccini AR. 2010. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Mater, 3 (7): 3867–3910.
  • Gürbüz M, Şenel M, Akyürekli A, Koç E, Doğan A. 2014. Endüstriyel alümina köpük üretimi ve teknolojik karakterizasyonu. 10th International Fracture Conference, April 24-26, Kayseri, Türkiye, p: 333-339
  • Iwamoto T, Hieda Y, Kogai Y. 2021. Effects of molecular weight on macropore sizes and characterization of porous hydroxyapatite ceramics fabricated using polyethylene glycol: mechanisms to generate macropores and tune their sizes. In: Mater Today Chem, 20:100421.
  • Jokic B, Ivan S, Milorad Z, Kosovka OD, Petrovic R, Djordje J. 2012. Silicon-doped biphasic α-calcium-phosphate/hydroxyapatite scaffolds obtained by a replica foam method using uniform pre-annealed spherical particles. Mater Lett, 74: 155–158.
  • Kalita SJ, Bhardwaj A, Bhatt HA. 2007. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C, 27 (3): 441–449.
  • Kumar S, Gautam C, Chauhan BS, Srikrishna S, Yadav R, Rai SB. 2020. Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: A bone substitute material for load bearing applications. Ceram Inter, 46 (10): 16235–16248.
  • Li M, Xiong P, Yan F, Li S, Ren C, Yin Z et al. 2018. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact Mater, 3 (1): 1–18.
  • Novotna L, Chlup Z, Jaros J, Castkova K, Drdlik D, Pospisil, J et al. 2022. Macroporous bioceramic scaffolds based on tricalcium phosphates reinforced with silica: microstructural, mechanical, and biological evaluation. J Asian Ceram Soc, 10 (2): 356–369.
  • Raju APR. 2017. Production and applications of graphene and its composites. PhD Thesis, The University of Manchester, UK, pp:273
  • Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. 2021. Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceram, 6: 100122.
  • Shi X, Zhou J, Liu G, Wang L. 2017. The physical and antimicrobial properties of silver doped hydroxyapatite sintered by microwave and conventional sintering. J Inorg Organomet Polym, 27: 955–961.
  • Singh RP. 2019. Utility of nanomaterials in food safety. In: Singh RL, Mondal S, editors, Food Safety and Human Health, Elsevier, pp: 285–318.
  • Sopyan I, Mel M, Ramesh S, Khalid KA. 2007. Porous hydroxyapatite for artificial bone applications. Sci Technol Ad Mater, 8 (1-2): 116–123.
  • Stipniece L, Narkevica I, Sokolova M, Locs J, Ozolins J. 2016. Novel scaffolds based on hydroxyapatite/poly (vinyl alcohol) nanocomposite coated porous TiO2 ceramics for bone tissue engineering. Ceram Int 42 (1): 1530–1537.
  • Swain SK, Bhattacharyya S, Sarkar D. 2011. Preparation of porous scaffold from hydroxyapatite powders. Mater Sci and Eng C, 31 (6): 1240–1244.
  • Zhao Y, Sun KN, Wang WL, Wang YX, Sun XL, Liang YJ et al. 2013. Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite. Ceram Int, 39 (7): 7627–7634.

Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi

Year 2025, Volume: 8 Issue: 6, 1774 - 1779, 15.11.2025
https://doi.org/10.34248/bsengineering.1753133

Abstract

Bu çalışmada, biyomedikal uygulamalarda kullanılmak üzere sünger şablon yöntemiyle açık gözenekli hidroksiapatit (HA) köpük kompozitler üretilmiştir. Sinterleme sonrası yapı ve performans üzerindeki etkilerini incelemek amacıyla HA matrisine ağırlıkça %0,1, 0,3, 0,5 ve 1 oranlarında grafen (Gr) katkısı yapılmıştır. Numuneler 1300 °C’de 2 saat süreyle sinterlenmiş; deneysel yoğunluk, gözeneklilik, basma dayanımı ve mikroyapısal özellikleri değerlendirilmiştir. Grafen katkısı HA köpüklerin yapısal bütünlüğünü ve mekanik özelliklerini iyileştirmiştir. Özellikle ağ. %0,3 Gr katkılı numune, en yüksek yoğunluk (0,768 g/cm³), en düşük gözeneklilik (%75) ve en yüksek basma dayanımı (~0,152 MPa) değerlerine ulaşmıştır. Bu değer, saf HA köpüğe kıyasla yaklaşık 2,5 katlık bir dayanım artışına karşılık gelmektedir. Ancak ağ.%1 Gr katkısında yoğunluk ve dayanım değerleri düşerken, gözeneklilik artmıştır. Bu durum, grafenin yüksek oranlarda topaklanarak mikrogözenek oluşumuna neden olmasıyla ilişkilidir. SEM-EDS görüntüleri incelendiğinde ağ. %0,3 Gr katkısının kompozit yapıda homojen dağılım gösterdiği görülmüştür.

References

  • Avcı Ş. 2023. Preparation and characterization of porous hydroxyapatite reinforced with hydroxyapatite whiskers, JANSET, 3 (1): 1–6.
  • Baradaran S, Moghaddam E, Bahman NT, Basirun WJ, Mehrali M, Sookhakian M. 2015. Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. Mater Sci Eng C Mater Biol Appl, 49: 656–668.
  • Bertolla L, Dlouhý I, Boccaccini AR. 2014. Preparation and characterization of Bioglass®-based scaffolds reinforced by poly-vinyl alcohol/microfibrillated cellulose composite coating. J Eur Ceram, 34(14): 3379–3387.
  • Çakmak S. 2015. Development of hydroxyapatite/peptide amphiphile based nanocomposite scaffolds for bone tissue repair. PhD thesis, Hacettepe University, Institute of Science, Ankara, Türkiye, pp:183.
  • Dadaev R. 2019. Grafen reinforced calcium phosphate based ceramic foam materials artificial bone purpose production and characterization. MSc thesis, Ondokuz Mayis University, Institute of Science, Samsun, Türkiye, pp:70.
  • Dadaev R, Gürbüz M. 2019. Optimization of process parameters for porous artificial bone. IJMSIT, 3: 28-30.
  • Evis Z. 2011. Çeşitli iyonlar eklenmiş nano-hidroksiapatitler: üretim yöntemleri, iç yapı, mekanik ve biyouyumluluk özellikleri yönlerinden incelenmesi. IJERAD, 3 (1):55–65.
  • Gerhardt LC, Boccaccini AR. 2010. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Mater, 3 (7): 3867–3910.
  • Gürbüz M, Şenel M, Akyürekli A, Koç E, Doğan A. 2014. Endüstriyel alümina köpük üretimi ve teknolojik karakterizasyonu. 10th International Fracture Conference, April 24-26, Kayseri, Türkiye, p: 333-339
  • Iwamoto T, Hieda Y, Kogai Y. 2021. Effects of molecular weight on macropore sizes and characterization of porous hydroxyapatite ceramics fabricated using polyethylene glycol: mechanisms to generate macropores and tune their sizes. In: Mater Today Chem, 20:100421.
  • Jokic B, Ivan S, Milorad Z, Kosovka OD, Petrovic R, Djordje J. 2012. Silicon-doped biphasic α-calcium-phosphate/hydroxyapatite scaffolds obtained by a replica foam method using uniform pre-annealed spherical particles. Mater Lett, 74: 155–158.
  • Kalita SJ, Bhardwaj A, Bhatt HA. 2007. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C, 27 (3): 441–449.
  • Kumar S, Gautam C, Chauhan BS, Srikrishna S, Yadav R, Rai SB. 2020. Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: A bone substitute material for load bearing applications. Ceram Inter, 46 (10): 16235–16248.
  • Li M, Xiong P, Yan F, Li S, Ren C, Yin Z et al. 2018. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact Mater, 3 (1): 1–18.
  • Novotna L, Chlup Z, Jaros J, Castkova K, Drdlik D, Pospisil, J et al. 2022. Macroporous bioceramic scaffolds based on tricalcium phosphates reinforced with silica: microstructural, mechanical, and biological evaluation. J Asian Ceram Soc, 10 (2): 356–369.
  • Raju APR. 2017. Production and applications of graphene and its composites. PhD Thesis, The University of Manchester, UK, pp:273
  • Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. 2021. Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceram, 6: 100122.
  • Shi X, Zhou J, Liu G, Wang L. 2017. The physical and antimicrobial properties of silver doped hydroxyapatite sintered by microwave and conventional sintering. J Inorg Organomet Polym, 27: 955–961.
  • Singh RP. 2019. Utility of nanomaterials in food safety. In: Singh RL, Mondal S, editors, Food Safety and Human Health, Elsevier, pp: 285–318.
  • Sopyan I, Mel M, Ramesh S, Khalid KA. 2007. Porous hydroxyapatite for artificial bone applications. Sci Technol Ad Mater, 8 (1-2): 116–123.
  • Stipniece L, Narkevica I, Sokolova M, Locs J, Ozolins J. 2016. Novel scaffolds based on hydroxyapatite/poly (vinyl alcohol) nanocomposite coated porous TiO2 ceramics for bone tissue engineering. Ceram Int 42 (1): 1530–1537.
  • Swain SK, Bhattacharyya S, Sarkar D. 2011. Preparation of porous scaffold from hydroxyapatite powders. Mater Sci and Eng C, 31 (6): 1240–1244.
  • Zhao Y, Sun KN, Wang WL, Wang YX, Sun XL, Liang YJ et al. 2013. Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite. Ceram Int, 39 (7): 7627–7634.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Material Characterization
Journal Section Research Article
Authors

Mustafa Karabatak 0000-0001-8471-7428

Tuğba Mutuk 0000-0003-0143-2721

Mevlüt Gürbüz 0000-0003-2365-5918

Early Pub Date November 12, 2025
Publication Date November 15, 2025
Submission Date July 29, 2025
Acceptance Date September 20, 2025
Published in Issue Year 2025 Volume: 8 Issue: 6

Cite

APA Karabatak, M., Mutuk, T., & Gürbüz, M. (2025). Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi. Black Sea Journal of Engineering and Science, 8(6), 1774-1779. https://doi.org/10.34248/bsengineering.1753133
AMA Karabatak M, Mutuk T, Gürbüz M. Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi. BSJ Eng. Sci. November 2025;8(6):1774-1779. doi:10.34248/bsengineering.1753133
Chicago Karabatak, Mustafa, Tuğba Mutuk, and Mevlüt Gürbüz. “Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi”. Black Sea Journal of Engineering and Science 8, no. 6 (November 2025): 1774-79. https://doi.org/10.34248/bsengineering.1753133.
EndNote Karabatak M, Mutuk T, Gürbüz M (November 1, 2025) Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi. Black Sea Journal of Engineering and Science 8 6 1774–1779.
IEEE M. Karabatak, T. Mutuk, and M. Gürbüz, “Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi”, BSJ Eng. Sci., vol. 8, no. 6, pp. 1774–1779, 2025, doi: 10.34248/bsengineering.1753133.
ISNAD Karabatak, Mustafa et al. “Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi”. Black Sea Journal of Engineering and Science 8/6 (November2025), 1774-1779. https://doi.org/10.34248/bsengineering.1753133.
JAMA Karabatak M, Mutuk T, Gürbüz M. Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi. BSJ Eng. Sci. 2025;8:1774–1779.
MLA Karabatak, Mustafa et al. “Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi”. Black Sea Journal of Engineering and Science, vol. 8, no. 6, 2025, pp. 1774-9, doi:10.34248/bsengineering.1753133.
Vancouver Karabatak M, Mutuk T, Gürbüz M. Açık Gözenekli Hidroksiapatit Köpük Kompozitlerde Grafen Katkısının Basma Dayanımı Üzerine Etkisi. BSJ Eng. Sci. 2025;8(6):1774-9.

                            24890