Research Article
BibTex RIS Cite

Statistical Analysis of Income Dynamics in STEM, It and Technical Occupations: The Role of Skill Mismatch and Individual Skills

Year 2025, Volume: 8 Issue: 6, 1911 - 1920, 15.11.2025
https://doi.org/10.34248/bsengineering.1755459

Abstract

This study is based on the 2022–2023 wave data of the Life in Transition Survey (LITS IV), conducted by the European Bank for Reconstruction and Development (EBRD). It presents a statistical analysis of income changes among individuals working in STEM (science, technology, engineering, and mathematics), information technology, and other technical professions. The analytical sample consists of 2,672 active individuals employed in fields such as engineering, natural sciences, information technology, and applied technical areas. The dependent variable is constructed by comparing individuals’ subjective assessments of their current income levels with their retrospective perceptions of income from four years ago. This variable is defined as an ordinal variable. To examine skill-based factors affecting income changes, five ordered logit regression models were estimated. Key explanatory variables include occupation type, individuals’ subjective evaluations of their technical knowledge, computer and foreign language skills, and the match between their skills and job requirements. Additionally, interaction terms between skill levels and occupational groups were tested in the models. The estimation results indicate that foreign language skills have a consistent, positive, and statistically significant effect on perceived income growth. In contrast, the effects of technical knowledge, computer skills, and skill-job match variables are generally statistically insignificant. Most of the interaction terms were also found to be insignificant. However, a significant and positive effect was observed only among skilled technical workers with moderate levels of technical knowledge. This analysis examines the role of different occupational types and skill levels within the technical workforce on income changes. The findings help us better understand the drivers of individual-level income mobility. They highlight the importance of strengthening foreign language education in vocational training programs to support upward income mobility in technical professions.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

References

  • Anghel B. 2025. Foreign language knowledge. In: Cabrales A, Sanz I, editors. Economics of Education: An Introductory Textbook. Palgrave Macmillan Cham, London, UK, 1st ed., pp: 247-267.
  • Atasoy H, Banker RD, Pavlou PA. 2021. Information technology skills and labor market outcomes for workers. Inf Syst Res, 32(2): 437-461.
  • Autor DH. 2014. Skills, education, and the rise of earnings inequality among the other 99 percent. Science, 344: 843-851.
  • Bárány ZL, Siegel C. 2018. Job polarization and structural change. Am Econ J Macroecon, 10(1): 57-89.
  • Braxton JC, Taska B. 2023. Technological change and the consequences of job loss. Am Econ Rev, 113(2): 279-316.
  • Chavadi CA, Sirothiya M, MR V. 2022. Mediating role of job satisfaction on turnover intentions and job mismatch among millennial employees in Bengaluru. Bus Perspect Res, 10(1): 79-100.
  • Churkina O, Nazareno L, Zullo M. 2023. The labor market outcomes of bilinguals in the United States: Accumulation and returns effects. PLoS One, 18(6): e0287711.
  • Clark AE, Flèche S, Senik C. 2016. Economic growth evens out happiness: Evidence from six surveys. Rev Income Wealth, 62(3): 405-419.
  • Clark AE, Frijters P, Shields MA. 2008. Relative income, happiness, and utility: An explanation for the Easterlin paradox and other puzzles. J Econ Lit, 46(1): 95-144.
  • Clarke C, Kopczuk W. 2025. Measuring income and income inequality. J Econ Perspect, 39(2):103-126.
  • Fagerland MW, Hosmer DW. 2017. How to test for goodness of fit in ordinal logistic regression models. Stata J, 17(3): 668-686.
  • Frey CB, Osborne MA. 2017. The future of employment: How susceptible are jobs to computerisation? Technol Forecast Soc Change, 114: 254-280.
  • Green F, Henseke G. 2016. The changing graduate labour market: analysis using a new indicator of graduate jobs. IZA J Labor Policy, 5(1): 14.
  • Green F, Zhu Y. 2010. Overqualification, job dissatisfaction, and increasing dispersion in the returns to graduate education. Oxf Econ Pap, 62(4): 740-763.
  • Li J, Yang H, Weng Q, Zhu L. 2023. How different forms of job crafting relate to job satisfaction: The role of person-job fit and age. Curr Psychol, 42(13): 11155-11169.
  • Lopes JM, Silveira P, Farinha L, Oliveira M, Oliveira J. 2021. Analyzing the root of regional innovation performance in the European territory. Int J Innov Sci, 13(5): 565-582.
  • Mateos-Romero L, Salinas-Jiménez MDM. 2018. Labor mismatches: Effects on wages and on job satisfaction in 17 OECD countries. Soc Indic Res, 140(1): 369-391.
  • McGuinness S, Bergin A, Whelan A. 2018. Overeducation in Europe: trends, convergence, and drivers. Oxf Econ Pap, 70(4): 994-1015.
  • Montt G. 2017. Field-of-study mismatch and overqualification: labour market correlates and their wage penalty. IZA J Labor Econ, 6(1): 2.
  • Oesch D, Piccitto G. 2019. The polarization myth: Occupational upgrading in Germany, Spain, Sweden, and the UK, 1992–2015. Work Occup, 46(4): 441-469.
  • Ohno H, Lee KT, Maeno T. 2023. Feelings of personal relative deprivation and subjective well-being in Japan. Behav Sci, 13(2): 158.
  • Peltokorpi V. 2023. The “language” of career success: The effects of English language competence on local employees’ career outcomes in foreign subsidiaries. J Int Bus Stud, 54(2): 258-284.
  • Siwale K, Mwalemba G. 2023. Societal influences on career decision making: Perspectives of A frican women pursuing technology‐related professions. Electr J Inf Sys Dev, 89(4): e12259.
  • Śliwicki D. 2025. Job satisfaction among young adults in Germany. In: Osińska M, editors. Economic Challenges and Young Adults, Routledge, London, UK, 1st ed., pp: 219-246.
  • Wang Z, De Graaff T, Nijkmap P. 2023. Differences in heterogeneous returns to foreign language use at work among natives and migrants in Europe. Rom J Reg Sci, 17(1).
  • Williams R. 2006. Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata J, 6(1): 58–82.
  • Woessmann L. 2024. Skills and earnings: A multidimensional perspective on human capital. Annu Rev Econ, 17: 397-425.

Stem, Bilişim ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu ve Bireysel Becerilerin Rolü

Year 2025, Volume: 8 Issue: 6, 1911 - 1920, 15.11.2025
https://doi.org/10.34248/bsengineering.1755459

Abstract

Bu çalışma, Avrupa İmar ve Kalkınma Bankası (EBRD) tarafından yürütülen Life in Transition Survey (LITS IV)’ün 2022–2023 dönemi verilerine dayanmaktadır. Çalışma, STEM (fen, teknoloji, mühendislik ve matematik), bilişim ve diğer teknik mesleklerde çalışan bireylerin gelir değişimlerine ilişkin istatistiksel bir analiz sunmaktadır. Analiz örneklemi, mühendislik, fen bilimleri, bilgi teknolojileri ve uygulamalı teknik alanlarda çalışan toplam 2.672 aktif bireyden oluşmaktadır. Bağımlı değişken, bireylerin mevcut gelir düzeylerine ilişkin öznel değerlendirmeleri ile dört yıl öncesine dair geriye dönük gelir algılarının karşılaştırılmasıyla oluşturulmuştur. Bu değişken, sıralı bir değişken olarak tanımlanmıştır. Gelir değişimini etkileyen beceri temelli faktörleri incelemek amacıyla beş adet sıralı logit regresyon modeli tahmin edilmiştir. Temel açıklayıcı değişkenler arasında meslek türü, bireylerin teknik bilgi, bilgisayar ve yabancı dil becerileri ile iş-beceri uyumuna ilişkin öznel değerlendirmeleri yer almaktadır. Ayrıca, beceri düzeyleri ile meslek grupları arasındaki etkileşim terimleri de modellerde test edilmiştir. Tahmin sonuçları, yabancı dil becerisinin gelir artışı algısı üzerinde tutarlı, pozitif ve istatistiksel olarak anlamlı bir etkisi olduğunu göstermektedir. Buna karşılık, teknik bilgi, bilgisayar becerileri ve iş-beceri uyumu değişkenlerinin etkileri genel olarak istatistiksel olarak anlamlı değildir. Etkileşim terimlerinin büyük kısmı da anlamsız bulunmuştur. Ancak, yalnızca orta düzey teknik bilgiye sahip nitelikli teknik işçilerde anlamlı ve pozitif bir etki gözlemlenmiştir. Bu analiz, teknik iş gücündeki farklı meslek türleri ve beceri düzeylerinin gelir değişimleri üzerindeki rolünü incelemektedir. Elde edilen bulgular, bireysel düzeyde gelir hareketliliğinin nedenlerini daha iyi anlamamıza yardımcı olmaktadır. Bulgular, teknik mesleklerde yukarı yönlü gelir hareketliliğini desteklemek amacıyla mesleki eğitim programlarında yabancı dil eğitiminin güçlendirilmesinin önemine işaret etmektedir.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

References

  • Anghel B. 2025. Foreign language knowledge. In: Cabrales A, Sanz I, editors. Economics of Education: An Introductory Textbook. Palgrave Macmillan Cham, London, UK, 1st ed., pp: 247-267.
  • Atasoy H, Banker RD, Pavlou PA. 2021. Information technology skills and labor market outcomes for workers. Inf Syst Res, 32(2): 437-461.
  • Autor DH. 2014. Skills, education, and the rise of earnings inequality among the other 99 percent. Science, 344: 843-851.
  • Bárány ZL, Siegel C. 2018. Job polarization and structural change. Am Econ J Macroecon, 10(1): 57-89.
  • Braxton JC, Taska B. 2023. Technological change and the consequences of job loss. Am Econ Rev, 113(2): 279-316.
  • Chavadi CA, Sirothiya M, MR V. 2022. Mediating role of job satisfaction on turnover intentions and job mismatch among millennial employees in Bengaluru. Bus Perspect Res, 10(1): 79-100.
  • Churkina O, Nazareno L, Zullo M. 2023. The labor market outcomes of bilinguals in the United States: Accumulation and returns effects. PLoS One, 18(6): e0287711.
  • Clark AE, Flèche S, Senik C. 2016. Economic growth evens out happiness: Evidence from six surveys. Rev Income Wealth, 62(3): 405-419.
  • Clark AE, Frijters P, Shields MA. 2008. Relative income, happiness, and utility: An explanation for the Easterlin paradox and other puzzles. J Econ Lit, 46(1): 95-144.
  • Clarke C, Kopczuk W. 2025. Measuring income and income inequality. J Econ Perspect, 39(2):103-126.
  • Fagerland MW, Hosmer DW. 2017. How to test for goodness of fit in ordinal logistic regression models. Stata J, 17(3): 668-686.
  • Frey CB, Osborne MA. 2017. The future of employment: How susceptible are jobs to computerisation? Technol Forecast Soc Change, 114: 254-280.
  • Green F, Henseke G. 2016. The changing graduate labour market: analysis using a new indicator of graduate jobs. IZA J Labor Policy, 5(1): 14.
  • Green F, Zhu Y. 2010. Overqualification, job dissatisfaction, and increasing dispersion in the returns to graduate education. Oxf Econ Pap, 62(4): 740-763.
  • Li J, Yang H, Weng Q, Zhu L. 2023. How different forms of job crafting relate to job satisfaction: The role of person-job fit and age. Curr Psychol, 42(13): 11155-11169.
  • Lopes JM, Silveira P, Farinha L, Oliveira M, Oliveira J. 2021. Analyzing the root of regional innovation performance in the European territory. Int J Innov Sci, 13(5): 565-582.
  • Mateos-Romero L, Salinas-Jiménez MDM. 2018. Labor mismatches: Effects on wages and on job satisfaction in 17 OECD countries. Soc Indic Res, 140(1): 369-391.
  • McGuinness S, Bergin A, Whelan A. 2018. Overeducation in Europe: trends, convergence, and drivers. Oxf Econ Pap, 70(4): 994-1015.
  • Montt G. 2017. Field-of-study mismatch and overqualification: labour market correlates and their wage penalty. IZA J Labor Econ, 6(1): 2.
  • Oesch D, Piccitto G. 2019. The polarization myth: Occupational upgrading in Germany, Spain, Sweden, and the UK, 1992–2015. Work Occup, 46(4): 441-469.
  • Ohno H, Lee KT, Maeno T. 2023. Feelings of personal relative deprivation and subjective well-being in Japan. Behav Sci, 13(2): 158.
  • Peltokorpi V. 2023. The “language” of career success: The effects of English language competence on local employees’ career outcomes in foreign subsidiaries. J Int Bus Stud, 54(2): 258-284.
  • Siwale K, Mwalemba G. 2023. Societal influences on career decision making: Perspectives of A frican women pursuing technology‐related professions. Electr J Inf Sys Dev, 89(4): e12259.
  • Śliwicki D. 2025. Job satisfaction among young adults in Germany. In: Osińska M, editors. Economic Challenges and Young Adults, Routledge, London, UK, 1st ed., pp: 219-246.
  • Wang Z, De Graaff T, Nijkmap P. 2023. Differences in heterogeneous returns to foreign language use at work among natives and migrants in Europe. Rom J Reg Sci, 17(1).
  • Williams R. 2006. Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata J, 6(1): 58–82.
  • Woessmann L. 2024. Skills and earnings: A multidimensional perspective on human capital. Annu Rev Econ, 17: 397-425.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Statistical Analysis, Statistical Data Science, Applied Statistics
Journal Section Research Article
Authors

Mustafa Özer 0000-0002-1279-9273

Early Pub Date November 12, 2025
Publication Date November 15, 2025
Submission Date August 1, 2025
Acceptance Date October 20, 2025
Published in Issue Year 2025 Volume: 8 Issue: 6

Cite

APA Özer, M. (2025). Stem, Bilişim ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu ve Bireysel Becerilerin Rolü. Black Sea Journal of Engineering and Science, 8(6), 1911-1920. https://doi.org/10.34248/bsengineering.1755459
AMA Özer M. Stem, Bilişim ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu ve Bireysel Becerilerin Rolü. BSJ Eng. Sci. November 2025;8(6):1911-1920. doi:10.34248/bsengineering.1755459
Chicago Özer, Mustafa. “Stem, Bilişim Ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu Ve Bireysel Becerilerin Rolü”. Black Sea Journal of Engineering and Science 8, no. 6 (November 2025): 1911-20. https://doi.org/10.34248/bsengineering.1755459.
EndNote Özer M (November 1, 2025) Stem, Bilişim ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu ve Bireysel Becerilerin Rolü. Black Sea Journal of Engineering and Science 8 6 1911–1920.
IEEE M. Özer, “Stem, Bilişim ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu ve Bireysel Becerilerin Rolü”, BSJ Eng. Sci., vol. 8, no. 6, pp. 1911–1920, 2025, doi: 10.34248/bsengineering.1755459.
ISNAD Özer, Mustafa. “Stem, Bilişim Ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu Ve Bireysel Becerilerin Rolü”. Black Sea Journal of Engineering and Science 8/6 (November2025), 1911-1920. https://doi.org/10.34248/bsengineering.1755459.
JAMA Özer M. Stem, Bilişim ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu ve Bireysel Becerilerin Rolü. BSJ Eng. Sci. 2025;8:1911–1920.
MLA Özer, Mustafa. “Stem, Bilişim Ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu Ve Bireysel Becerilerin Rolü”. Black Sea Journal of Engineering and Science, vol. 8, no. 6, 2025, pp. 1911-20, doi:10.34248/bsengineering.1755459.
Vancouver Özer M. Stem, Bilişim ve Teknik Mesleklerde Gelir Dinamiklerinin İstatistiksel Analizi: Beceri Uyumsuzluğu ve Bireysel Becerilerin Rolü. BSJ Eng. Sci. 2025;8(6):1911-20.

                            24890