Review
BibTex RIS Cite

Mevcut ve Gelişmekte Olan Aşı Teknolojileri; Kısa derleme

Year 2023, , 148 - 156, 25.10.2023
https://doi.org/10.34084/bshr.1374872

Abstract

Aşı teknolojileri, daha etkili ve çok yönlü aşılama stratejilerine duyulan ihtiyaç nedeniyle önemli ölçüde gelişti. Geleneksel aşılar öncelikle bağışıklık sistemini uyarmak için zayıflatılmış veya etkisiz hale getirilmiş patojenleri kullanıyordu. Ancak moleküler biyoloji ve immünolojideki son gelişmeler yeni aşı platformlarının geliştirilmesine yol açtı. Dikkate değer ilerlemelerden biri, COVID-19 aşılarından biri olan mRNA aşılarının geliştirilmesidir. Bu aşılar, hücrelere patojenin zararsız bir kısmını üretme talimatı vermek için sentetik mRNA'yı kullanarak güçlü bir bağışıklık tepkisi ortaya çıkarır. Umut verici başka bir yaklaşım, patojenik antijenleri kodlayan genetik materyali konakçı hücrelere iletmek için değiştirilmiş bir virüs kullanan viral vektör aşılarını içerir. Bu teknoloji, Ebola ve COVID-19 gibi hastalıklara karşı güçlü bir bağışıklık tepkisi sağlayarak umut vaat etmektedir. Protein alt birim aşılarındaki yenilikler, bir bağışıklık tepkisini tetiklemek için patojenin proteinler veya peptidler gibi zararsız parçalarının kullanılmasını içerir. Bu aşılar, genellikle adjuvanlar veya nanopartikül dağıtım sistemleri yoluyla geliştirilmiş güvenlik ve etkinlik sunar. Ayrıca, DNA aşıları gibi nükleik asit bazlı aşılardaki ilerlemeler, aşılama için potansiyel olarak güçlü ve esnek bir platform sunmaktadır. Ek olarak, günümüzde nanoteknoloji sayesinde bağışıklık tepkileri güçlendirerek aşı gelişiminekatkı sağlanmıştır. Nanopartiküller, antijenleri veya adjuvanları kapsülleyerek aşı etkinliğini optimize edebilmektedir.Sonuç olarak, mevcut aşı teknolojileri, mRNA ve viral vektör aşıları, protein alt birim aşıları, nükleik asit bazlı aşılar ve nanoteknoloji dahil olmak üzere yenilikçi ve çeşitli yaklaşımlara doğru bir geçiş sergilemektedir. Bu ilerlemeler, ortaya çıkan bulaşıcı hastalıkların ele alınması ve aşının erişilebilirliğinin, güvenliğinin ve etkinliğinin iyileştirilmesi konusunda umut vaat etmektedir.

References

  • 1. Jefferson T. Bioterrorism and compulsory vaccination. BMJ. 2004;329(7465):524-525. doi:10.1136/bmj.329.746 5.524
  • 2. Saleh A, Qamar S, Tekin A, Singh R, Kashyap R. Vaccine Development Throughout History. Cureus. 2021;13(7). doi:10.7759/cureus.16635
  • 3. Hardt K, Bonanni P, King S, et al. Vaccine strategies: Optimising outcomes. Vaccine. 2016;34(52):6691-9. doi:10.1016/j. vaccine.2016.10.078
  • 4. Shaker R, Fayad D, Dbaibo G. Challenges and opportunities for meningococcal vaccination in the developing world. Hum Vaccin Immunother. 2018;14(5): 1084-97. doi:10.1080/21645515.2018.1434463
  • 5. Muraskin W. The global alliance for vaccines and immunization: Is it a new model for effective public– private cooperation in international public health? Am J Public Health. 2004;94(11):1922-5. doi:10.2105/AJPH. 94.11.1922
  • 6. Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018;50(2):110-20. doi:10.1080/07 853890.2017.1407035
  • 7. Fijen CA, Kuijper EJ, te Bulte MT, Daha MR, Dankert J. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis. 1999;28(1):98-105. doi: 10.1086/515075. PMID: 10028078.
  • 8. Wara DW. Host defense against Streptococcus pneumoniae: the role of the spleen. Rev Infect Dis. 1981;3(2):299-309. doi: 10.1093/clinids/3.2.299. PMID: 7256088.
  • 9. Demicheli V, Barale A, Rivetti A. Vaccines for women for preventing neonatal tetanus. Cochrane Database Syst Rev. 2015(7):CD002959. doi: 10.1002/14651858.CD002959.pub4.
  • 10. Madhi SA, Cutland CL, Kuwanda L, et al. Influenza vaccination of pregnant women and protection of their infants. N Engl J Med. 2014;371(10):918-31. doi: 10.1056/NEJMoa1401480.
  • 11. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(83)–100. doi.org/10.1038/s41577-020-00479-7
  • 12. Patel M, Lee CK. Polysaccharide vaccines for preventing serogroup A meningococcal meningitis. Cochrane Database Syst Rev. 2005;25(1):CD001093. doi: 10.1002/14651858.CD001093.pub2.
  • 13. Moberley S, Holden J, Tatham DP, Andrews RM. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev. 2013;2013(1):CD000422. doi: 10.1002/14651858.CD000422.pub3.
  • 14. Pollard AJ, Perrett KP, Beverley PC. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev Immunol. 2009;9(3):213-20. doi: 10.1038/nri2494.
  • 15. Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J Med. 2014;370(23):2211-8. doi: 10.1056/NEJMra1213566.
  • 16. Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci U S A. 2005;102(13):4848-53. doi: 10.1073/pnas.0501254102.
  • 17. San Miguel A, Ramos MC. Historia de las vacunas y sueroterapia. Gaceta Médica de Bilbao.2013; 10(3):74-80. 10.
  • 18. Asociación Española de Vacunología. Alicante: Generalitat Valenciana; 2006 [consultado el 6 de febrero de 2020]. Tuells J. La introducción de la variolización en Europa. En: Tuells J y Ramírez SM. Balmis et Variola.
  • 19. Tuells J. La decisiva contribución de Edward Jenner (1749-1823) a la defensa contra la viruela. Vacunas. 2007; 8(1):53-60. doi.org/10.1016/S1576-9887(07)73972-9
  • 20. Kelley T. Immunizations & Infectious Diseases: An Informed Parent’s Guide. Archives of Pediatrics Adolescent Medicine. 2006; 160:986-987.
  • 21. Parish J. History of immunization. 1ª ed. Edinburgh and London: Cambridge University Press. 1965.
  • 22. Laín P. Historia de la Medicina.1ªed. Barcelona: Salvat. 1978.
  • 23. Sakula A. BCG: who were Calmette and Guérin? Thorax. 1983;38(11):806- 12. doi: 10.1136/thx.38.11.806.
  • 24. Galindo Santana BM, Galindo Sardiña MA, Pérez Rodríguez A. Sistema de vigilancia de eventos adversos consecutivos a la vacunación en la República de Cuba [Adverse reaction surveillance system for vaccination in the Republic of Cuba]. Rev Cubana Med Trop. 1999;51(3):194-200
  • 25. Parnas J. Thorvald Madsen 1870-1957. Leader in international public health. Dan Med Bull. 1981;28(2):82-86.
  • 26. Asociación Española de Vacunología. Alicante: Generalitat Valenciana; 2006 [consultado el 6 de febrero de 2020]. Tuells J. La introducción de la variolización en Europa. En: Tuells J y Ramírez SM. Balmis et Variola.
  • 27. Instituto Nacional del Cáncer. Vacunas contra el virus del papiloma humano (VPH). 2020. https://www.cancer.gov/espanol/cancer/causas-prevencion/riesgo/germenes-infecciosos/hoja-informativa-vacuna-vph Accessed:05 October 2023
  • 28. Sell S. How vaccines work: immune effector mechanisms and designer vaccines. Expert Rev Vaccines. 2019;18(10):993-1015. doi:10.1080/14760584.2019.1674144
  • 29. Boehm T, Swann JB. Origin and evolution of adaptive immunity. Annu Rev Anim Biosci. 2014;2(1):259-83. doi:10.1146/annurev-animal-022513-114201
  • 30. Mok DZ, Chan KR. The effects of pre-existing antibodies on live-attenuated viral vaccines. Viruses. 2020;12(5): 520. doi:10.3390/v12050520
  • 31. Bandyopadhyay AS, Garon J, Seib K, Orenstein WA. Polio vaccination: past, present and future. Future Microbiol. 2015;10(5):791-808. doi: 10.2217/fmb.15.19.
  • 32. Haber P, Moro PL, Ng C, et al. Safety review of tetanus toxoid, reduced diphtheria toxoid, acellular pertussis vaccines (Tdap) in adults aged≥ 65 years, Vaccine Adverse Event Reporting System (VAERS), United States, September 2010–December 2018. Vaccine. 2020;38(6):1476-80. doi: 10.1016/j.vaccine.2019.
  • 33. Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMed Chem. 2013;8(3):360-76. doi:10.1002/cmdc.201200487
  • 34. Lemoine C, Thakur A, Krajišnik D, et al. Technological approaches for improving vaccination compliance and coverage. Vaccines. 2020 ;8(2):304. doi: 10.3390/vaccines8020304.
  • 35. Farzanehpour M, Shahriary A, Dorostkar R, et al. New Vaccine Technologies for Rapid Response against Emerging, Reemerging Infections and Biological Threats: Lessons from COVID-19 for Future. Journal of Applied Biotechnology Reports, 2023; 10(1): 876-887. doi:10.30491/JABR.2022.324720.1486
  • 36. Kobayashi M, Schrag SJ, Alderson MR, et al. WHO consultation on group B Streptococcus vaccine development: Report from a meeting held on 27-28 April 2016. Vaccine. 2019;37(50):7307-7314. doi: 10.1016/j.vaccine.2016.12.029.
  • 37. Kilic SG, Dolapci I. Asilarin Tarihcesi ve Yeni Asi Stratejileri. Journal of Ankara University Faculty of Medicine. 74(1) 2021, 1-10. 10.4274/atfm.galenos.2020.14227
  • 38. Roldão A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9(10):1149-76. doi: 10.1586/erv.10.115.
  • 39. Akahata W, Yang ZY, Andersen H, et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med. 2010;16(3):334-8. doi: 10.1038/nm.2105.
  • 40. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123-132. doi: 10.1016/j.smim.2017.08.014.
  • 41. Stanberry LR, Strugnell R. Vaccines of the future. Perspectives in Vaccinology. 2011;1(1):151–99. doi: 10.1016/j.pervac.2011.05.006.
  • 42. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 2001;29(18):3882-91. doi: 10.1093/nar/29.18.3882.
  • 43. Grunwitz C, Kranz LM. mRNA Cancer Vaccines-Messages that Prevail. Curr Top Microbiol Immunol. 2017;405:145-164. doi: 10.1007/82_2017_509.
  • 44. Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol. 2019;196(2):189-204. doi: 10.1111/cei.13287.
  • 45. Jacobson JM, Routy JP, Welles S, et al. Dendritic Cell Immunotherapy for HIV-1 Infection Using Autologous HIV-1 RNA: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Acquir Immune Defic Syndr. 2016;72(1):31-8. doi: 10.1097/QAI.0000000000000926.
  • 46. Francis MJ. Recent Advances in Vaccine Technologies. Vet Clin North Am Small Anim Pract. 2018;48(2):231-241. doi: 10.1016/j.cvsm.2017.10.002.
  • 47. Redding L, Weiner DB. DNA vaccines in veterinary use. Expert Rev Vaccines. 2009;8(9):1251-76. doi: 10.1586/erv.09.77.
  • 48. CDC. What Clinicians Need to Know About the Pfizer-BioNTech COVID-19 Vaccine. 13 Aralık 2020. https://www.cdc.gov/vaccines/covid-19/downloads/pfizer-biontech-vaccine-what-Clinicians-need-to-know.pdf (accessed, 05 Oct, 2023)
  • 49. Mittal A, Manjunath K, Ranjan RK, Kaushik S, Kumar S, Verma V. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog. 2020;16(8):e1008762. doi: 10.1371/journal.ppat.1008762.
  • 50. Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines. 2021;20(8):935-944. doi: 10.1080/14760584.2021.
  • 51. Xin X, Liu Y, Guo L, et al. Improvement of B Cell Responses by an HIV-1 Amphiphilic Polymer Nanovaccine. Nano Lett. 2023;23(9):4090-4094. doi: 10.1021/acs.nanolett.3c01241.
  • 52. Arshad R, Sargazi S, Fatima I, et al. Nanotechnology for therapy of zoonotic diseases: a comprehensive overview, Chemistry Select. 2022;7 (21): e202201271 doi.org/10.1002/slct.202201271
  • 53. Priyanka Abusalah MAH, Chopra H, Sharma A, et al. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother. 2023;167:115597. doi: 10.1016/j.biopha.2023.115597.
  • 54. OMS COVID-19 Vaccine Tracker and Landscape. Available Online: https://www.Who.Int/Publications/m/Item/Draft-Landscape-of-Covid-19-Candidate-Vaccines(Accessed on 08 October 2023).
  • 55. World Health Organization Emergency Use Designation of COVID-19 Candidate Vaccines: Ethical Considerations for Current and Future Covid-19 PlaceboControlled Vaccine Trials and Trial Unblinding. Available Online: https://www. who.Int/Publications/i/Item/WHO-2019-nCoV-Policy_Brief-EUD_placebo-Contr olled_vaccine_trials-2020.1 (Accessed on 08 October 2023).
  • 56. Shin MD, Shukla S, Chung YH, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020;15(8):646-655. doi: 10.1038/s41565-020-0737-y.
  • 57. Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol. 2015:217-24. doi: 10.1016/j.copbio.2015.03.014.
  • 58. Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926-38. doi: 10.1021/nn3057005.
  • 59. Gregory AE, Judy BM, Qazi O, et al. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine. 2015;11(2):447-56. doi: 10.1016/j.nano.2014.08.005.
  • 60. Ginsberg BA, Gallardo HF, Rasalan TS, et al. Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particle-mediated epidermal delivery with intramuscular injection. Clin Cancer Res. 2010;16(15):4057-65. doi: 10.1158/1078-0432.CCR-10-1093.
  • 61. Roy MJ, Wu MS, Barr LJ, et al. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine. 2000;19(7-8):764-78. doi: 10.1016/s0264-410x(00)00302-9.
  • 62. Maquieira Á, Brun EM, Garcés-García M, Puchades R. Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal Chem. 2012;84(21):9340-8. doi: 10.1021/ac3020998.
  • 63. Fox CB, Kramer RM, Barnes V L, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. Ther Adv Vaccines. 2013;1(1):7-20. doi: 10.1177/2051013613480144.
  • 64. Morein B, Sundquist B, Höglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature. 1984;308(5958):457-60. doi: 10.1038/308457a0.
  • 65. Drane D, Gittleson C, Boyle J, Maraskovsky E. ISCOMATRIX adjuvant for prophylactic and therapeutic vaccines. Expert Rev Vaccines. 2007;6(5):761-72. doi: 10.1586/14760584.6.5.761.
  • 66. Cebon JS, Gore M, Thompson JF, et al. Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma. J Immunother Cancer. 2020;8(1):e000410. doi: 10.1136/jitc-2019-000410.
  • 67. Concha C, Cañas R, Macuer J, et al. Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines? Vaccines (Basel). 2017;5(2):14. doi: 10.3390/vaccines5020014.
  • 68. Sala F, Manuela Rigano M, et al. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine. 2003;21(7-8):803-8. doi: 10.1016/s0264-410x(02)00603-5.
  • 69. Specht EA, Mayfield SP. Algae-based oral recombinant vaccines. Front Microbiol. 2014;5:60. doi: 10.3389/fmicb.2014.00060.
  • 70. Nascimento IP, Leite LC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res. 2012;45(12):1102-11. doi: 10.1590/s0100-879x2012007500142.
  • 71. Gupta S, Pellett S. Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines. Toxins (Basel). 2023;15(9):563. doi: 10.3390/toxins15090563.
  • 72. Santos Onate Tenorio MDL, Eslava MP, Tenorio AO. Vaccines: Origin and evolution throughout history. J Vaccines Immunol. 2022; 8(1): 004-013.

Current and Emerging Vaccine Technologies; A short review

Year 2023, , 148 - 156, 25.10.2023
https://doi.org/10.34084/bshr.1374872

Abstract

Vaccine technologies have evolved significantly due to the need for more effective and versatile vaccination strategies. Traditional vaccines primarily used weakened or inactivated pathogens to stimulate the immune system. However, recent advances in molecular biology and immunology have led to the development of new vaccine platforms. One notable advance is the development of mRNA vaccines, one of the COVID-19 vaccines. These vaccines elicit a strong immune response by using synthetic mRNA to instruct cells to produce a harmless portion of the pathogen. Another promising approach involves viral vector vaccines, which use a modified virus to deliver genetic material encoding pathogenic antigens into host cells. This technology shows promise by providing a strong immune response against diseases such as Ebola and COVID-19. Innovations in protein subunit vaccines involve using harmless parts of the pathogen, such as proteins or peptides, to trigger an immune response. These vaccines often offer improved safety and efficacy through adjuvants or nanoparticle delivery systems. Additionally, advances in nucleic acid-based vaccines, such as DNA vaccines, offer a potentially powerful and flexible platform for vaccination. In addition, nanotechnology has contributed to vaccine development by strengthening immune responses. Nanoparticles can optimize vaccine efficacy by encapsulating antigens or adjuvants. As a result, current vaccine technologies are shifting towards innovative and diverse approaches, including mRNA and viral vector vaccines, protein subunit vaccines, nucleic acid-based vaccines, and nanotechnology. These advances hold promise for addressing emerging infectious diseases and improving vaccine availability, safety, and effectiveness.

References

  • 1. Jefferson T. Bioterrorism and compulsory vaccination. BMJ. 2004;329(7465):524-525. doi:10.1136/bmj.329.746 5.524
  • 2. Saleh A, Qamar S, Tekin A, Singh R, Kashyap R. Vaccine Development Throughout History. Cureus. 2021;13(7). doi:10.7759/cureus.16635
  • 3. Hardt K, Bonanni P, King S, et al. Vaccine strategies: Optimising outcomes. Vaccine. 2016;34(52):6691-9. doi:10.1016/j. vaccine.2016.10.078
  • 4. Shaker R, Fayad D, Dbaibo G. Challenges and opportunities for meningococcal vaccination in the developing world. Hum Vaccin Immunother. 2018;14(5): 1084-97. doi:10.1080/21645515.2018.1434463
  • 5. Muraskin W. The global alliance for vaccines and immunization: Is it a new model for effective public– private cooperation in international public health? Am J Public Health. 2004;94(11):1922-5. doi:10.2105/AJPH. 94.11.1922
  • 6. Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018;50(2):110-20. doi:10.1080/07 853890.2017.1407035
  • 7. Fijen CA, Kuijper EJ, te Bulte MT, Daha MR, Dankert J. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis. 1999;28(1):98-105. doi: 10.1086/515075. PMID: 10028078.
  • 8. Wara DW. Host defense against Streptococcus pneumoniae: the role of the spleen. Rev Infect Dis. 1981;3(2):299-309. doi: 10.1093/clinids/3.2.299. PMID: 7256088.
  • 9. Demicheli V, Barale A, Rivetti A. Vaccines for women for preventing neonatal tetanus. Cochrane Database Syst Rev. 2015(7):CD002959. doi: 10.1002/14651858.CD002959.pub4.
  • 10. Madhi SA, Cutland CL, Kuwanda L, et al. Influenza vaccination of pregnant women and protection of their infants. N Engl J Med. 2014;371(10):918-31. doi: 10.1056/NEJMoa1401480.
  • 11. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(83)–100. doi.org/10.1038/s41577-020-00479-7
  • 12. Patel M, Lee CK. Polysaccharide vaccines for preventing serogroup A meningococcal meningitis. Cochrane Database Syst Rev. 2005;25(1):CD001093. doi: 10.1002/14651858.CD001093.pub2.
  • 13. Moberley S, Holden J, Tatham DP, Andrews RM. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev. 2013;2013(1):CD000422. doi: 10.1002/14651858.CD000422.pub3.
  • 14. Pollard AJ, Perrett KP, Beverley PC. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev Immunol. 2009;9(3):213-20. doi: 10.1038/nri2494.
  • 15. Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J Med. 2014;370(23):2211-8. doi: 10.1056/NEJMra1213566.
  • 16. Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci U S A. 2005;102(13):4848-53. doi: 10.1073/pnas.0501254102.
  • 17. San Miguel A, Ramos MC. Historia de las vacunas y sueroterapia. Gaceta Médica de Bilbao.2013; 10(3):74-80. 10.
  • 18. Asociación Española de Vacunología. Alicante: Generalitat Valenciana; 2006 [consultado el 6 de febrero de 2020]. Tuells J. La introducción de la variolización en Europa. En: Tuells J y Ramírez SM. Balmis et Variola.
  • 19. Tuells J. La decisiva contribución de Edward Jenner (1749-1823) a la defensa contra la viruela. Vacunas. 2007; 8(1):53-60. doi.org/10.1016/S1576-9887(07)73972-9
  • 20. Kelley T. Immunizations & Infectious Diseases: An Informed Parent’s Guide. Archives of Pediatrics Adolescent Medicine. 2006; 160:986-987.
  • 21. Parish J. History of immunization. 1ª ed. Edinburgh and London: Cambridge University Press. 1965.
  • 22. Laín P. Historia de la Medicina.1ªed. Barcelona: Salvat. 1978.
  • 23. Sakula A. BCG: who were Calmette and Guérin? Thorax. 1983;38(11):806- 12. doi: 10.1136/thx.38.11.806.
  • 24. Galindo Santana BM, Galindo Sardiña MA, Pérez Rodríguez A. Sistema de vigilancia de eventos adversos consecutivos a la vacunación en la República de Cuba [Adverse reaction surveillance system for vaccination in the Republic of Cuba]. Rev Cubana Med Trop. 1999;51(3):194-200
  • 25. Parnas J. Thorvald Madsen 1870-1957. Leader in international public health. Dan Med Bull. 1981;28(2):82-86.
  • 26. Asociación Española de Vacunología. Alicante: Generalitat Valenciana; 2006 [consultado el 6 de febrero de 2020]. Tuells J. La introducción de la variolización en Europa. En: Tuells J y Ramírez SM. Balmis et Variola.
  • 27. Instituto Nacional del Cáncer. Vacunas contra el virus del papiloma humano (VPH). 2020. https://www.cancer.gov/espanol/cancer/causas-prevencion/riesgo/germenes-infecciosos/hoja-informativa-vacuna-vph Accessed:05 October 2023
  • 28. Sell S. How vaccines work: immune effector mechanisms and designer vaccines. Expert Rev Vaccines. 2019;18(10):993-1015. doi:10.1080/14760584.2019.1674144
  • 29. Boehm T, Swann JB. Origin and evolution of adaptive immunity. Annu Rev Anim Biosci. 2014;2(1):259-83. doi:10.1146/annurev-animal-022513-114201
  • 30. Mok DZ, Chan KR. The effects of pre-existing antibodies on live-attenuated viral vaccines. Viruses. 2020;12(5): 520. doi:10.3390/v12050520
  • 31. Bandyopadhyay AS, Garon J, Seib K, Orenstein WA. Polio vaccination: past, present and future. Future Microbiol. 2015;10(5):791-808. doi: 10.2217/fmb.15.19.
  • 32. Haber P, Moro PL, Ng C, et al. Safety review of tetanus toxoid, reduced diphtheria toxoid, acellular pertussis vaccines (Tdap) in adults aged≥ 65 years, Vaccine Adverse Event Reporting System (VAERS), United States, September 2010–December 2018. Vaccine. 2020;38(6):1476-80. doi: 10.1016/j.vaccine.2019.
  • 33. Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMed Chem. 2013;8(3):360-76. doi:10.1002/cmdc.201200487
  • 34. Lemoine C, Thakur A, Krajišnik D, et al. Technological approaches for improving vaccination compliance and coverage. Vaccines. 2020 ;8(2):304. doi: 10.3390/vaccines8020304.
  • 35. Farzanehpour M, Shahriary A, Dorostkar R, et al. New Vaccine Technologies for Rapid Response against Emerging, Reemerging Infections and Biological Threats: Lessons from COVID-19 for Future. Journal of Applied Biotechnology Reports, 2023; 10(1): 876-887. doi:10.30491/JABR.2022.324720.1486
  • 36. Kobayashi M, Schrag SJ, Alderson MR, et al. WHO consultation on group B Streptococcus vaccine development: Report from a meeting held on 27-28 April 2016. Vaccine. 2019;37(50):7307-7314. doi: 10.1016/j.vaccine.2016.12.029.
  • 37. Kilic SG, Dolapci I. Asilarin Tarihcesi ve Yeni Asi Stratejileri. Journal of Ankara University Faculty of Medicine. 74(1) 2021, 1-10. 10.4274/atfm.galenos.2020.14227
  • 38. Roldão A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9(10):1149-76. doi: 10.1586/erv.10.115.
  • 39. Akahata W, Yang ZY, Andersen H, et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med. 2010;16(3):334-8. doi: 10.1038/nm.2105.
  • 40. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123-132. doi: 10.1016/j.smim.2017.08.014.
  • 41. Stanberry LR, Strugnell R. Vaccines of the future. Perspectives in Vaccinology. 2011;1(1):151–99. doi: 10.1016/j.pervac.2011.05.006.
  • 42. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 2001;29(18):3882-91. doi: 10.1093/nar/29.18.3882.
  • 43. Grunwitz C, Kranz LM. mRNA Cancer Vaccines-Messages that Prevail. Curr Top Microbiol Immunol. 2017;405:145-164. doi: 10.1007/82_2017_509.
  • 44. Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol. 2019;196(2):189-204. doi: 10.1111/cei.13287.
  • 45. Jacobson JM, Routy JP, Welles S, et al. Dendritic Cell Immunotherapy for HIV-1 Infection Using Autologous HIV-1 RNA: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Acquir Immune Defic Syndr. 2016;72(1):31-8. doi: 10.1097/QAI.0000000000000926.
  • 46. Francis MJ. Recent Advances in Vaccine Technologies. Vet Clin North Am Small Anim Pract. 2018;48(2):231-241. doi: 10.1016/j.cvsm.2017.10.002.
  • 47. Redding L, Weiner DB. DNA vaccines in veterinary use. Expert Rev Vaccines. 2009;8(9):1251-76. doi: 10.1586/erv.09.77.
  • 48. CDC. What Clinicians Need to Know About the Pfizer-BioNTech COVID-19 Vaccine. 13 Aralık 2020. https://www.cdc.gov/vaccines/covid-19/downloads/pfizer-biontech-vaccine-what-Clinicians-need-to-know.pdf (accessed, 05 Oct, 2023)
  • 49. Mittal A, Manjunath K, Ranjan RK, Kaushik S, Kumar S, Verma V. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog. 2020;16(8):e1008762. doi: 10.1371/journal.ppat.1008762.
  • 50. Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines. 2021;20(8):935-944. doi: 10.1080/14760584.2021.
  • 51. Xin X, Liu Y, Guo L, et al. Improvement of B Cell Responses by an HIV-1 Amphiphilic Polymer Nanovaccine. Nano Lett. 2023;23(9):4090-4094. doi: 10.1021/acs.nanolett.3c01241.
  • 52. Arshad R, Sargazi S, Fatima I, et al. Nanotechnology for therapy of zoonotic diseases: a comprehensive overview, Chemistry Select. 2022;7 (21): e202201271 doi.org/10.1002/slct.202201271
  • 53. Priyanka Abusalah MAH, Chopra H, Sharma A, et al. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother. 2023;167:115597. doi: 10.1016/j.biopha.2023.115597.
  • 54. OMS COVID-19 Vaccine Tracker and Landscape. Available Online: https://www.Who.Int/Publications/m/Item/Draft-Landscape-of-Covid-19-Candidate-Vaccines(Accessed on 08 October 2023).
  • 55. World Health Organization Emergency Use Designation of COVID-19 Candidate Vaccines: Ethical Considerations for Current and Future Covid-19 PlaceboControlled Vaccine Trials and Trial Unblinding. Available Online: https://www. who.Int/Publications/i/Item/WHO-2019-nCoV-Policy_Brief-EUD_placebo-Contr olled_vaccine_trials-2020.1 (Accessed on 08 October 2023).
  • 56. Shin MD, Shukla S, Chung YH, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020;15(8):646-655. doi: 10.1038/s41565-020-0737-y.
  • 57. Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol. 2015:217-24. doi: 10.1016/j.copbio.2015.03.014.
  • 58. Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926-38. doi: 10.1021/nn3057005.
  • 59. Gregory AE, Judy BM, Qazi O, et al. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine. 2015;11(2):447-56. doi: 10.1016/j.nano.2014.08.005.
  • 60. Ginsberg BA, Gallardo HF, Rasalan TS, et al. Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particle-mediated epidermal delivery with intramuscular injection. Clin Cancer Res. 2010;16(15):4057-65. doi: 10.1158/1078-0432.CCR-10-1093.
  • 61. Roy MJ, Wu MS, Barr LJ, et al. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine. 2000;19(7-8):764-78. doi: 10.1016/s0264-410x(00)00302-9.
  • 62. Maquieira Á, Brun EM, Garcés-García M, Puchades R. Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal Chem. 2012;84(21):9340-8. doi: 10.1021/ac3020998.
  • 63. Fox CB, Kramer RM, Barnes V L, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. Ther Adv Vaccines. 2013;1(1):7-20. doi: 10.1177/2051013613480144.
  • 64. Morein B, Sundquist B, Höglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature. 1984;308(5958):457-60. doi: 10.1038/308457a0.
  • 65. Drane D, Gittleson C, Boyle J, Maraskovsky E. ISCOMATRIX adjuvant for prophylactic and therapeutic vaccines. Expert Rev Vaccines. 2007;6(5):761-72. doi: 10.1586/14760584.6.5.761.
  • 66. Cebon JS, Gore M, Thompson JF, et al. Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma. J Immunother Cancer. 2020;8(1):e000410. doi: 10.1136/jitc-2019-000410.
  • 67. Concha C, Cañas R, Macuer J, et al. Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines? Vaccines (Basel). 2017;5(2):14. doi: 10.3390/vaccines5020014.
  • 68. Sala F, Manuela Rigano M, et al. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine. 2003;21(7-8):803-8. doi: 10.1016/s0264-410x(02)00603-5.
  • 69. Specht EA, Mayfield SP. Algae-based oral recombinant vaccines. Front Microbiol. 2014;5:60. doi: 10.3389/fmicb.2014.00060.
  • 70. Nascimento IP, Leite LC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res. 2012;45(12):1102-11. doi: 10.1590/s0100-879x2012007500142.
  • 71. Gupta S, Pellett S. Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines. Toxins (Basel). 2023;15(9):563. doi: 10.3390/toxins15090563.
  • 72. Santos Onate Tenorio MDL, Eslava MP, Tenorio AO. Vaccines: Origin and evolution throughout history. J Vaccines Immunol. 2022; 8(1): 004-013.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Infectious Agents
Journal Section Review
Authors

Elmas Pınar Kahraman Kılbaş 0000-0003-1348-625X

Mustafa Altındiş 0000-0003-0411-9669

Early Pub Date October 27, 2023
Publication Date October 25, 2023
Submission Date October 12, 2023
Acceptance Date October 18, 2023
Published in Issue Year 2023

Cite

AMA Kahraman Kılbaş EP, Altındiş M. Mevcut ve Gelişmekte Olan Aşı Teknolojileri; Kısa derleme. J Biotechnol and Strategic Health Res. October 2023;7(3):148-156. doi:10.34084/bshr.1374872
  • Dergimiz Uluslararası hakemli bir dergi olup TÜRKİYE ATIF DİZİNİ, TürkMedline, CrossREF, ASOS index, Google Scholar, JournalTOCs, Eurasian Scientific Journal Index(ESJI), SOBIAD ve ISIindexing dizinlerinde taranmaktadır. TR Dizin(ULAKBİM), SCOPUS, DOAJ için başvurularımızın sonuçlanması beklenmektedir.