Year 2020, Volume 12 , Issue 1, Pages 17 - 23 2020-07-31

Climate Change Prompts Monitoring and Systematic Utilization of Honey Bee Diversity in Turkey

Mert KÜKRER [1] , C. Can BİLGİN [2]


Quantitative studies concerning the impact of climate change on pollinators are generally lacking. Relationship between honey bee diversity, present local adaptations and adaptive capacity of subspecies and ecotypes in the face of climate change is an urgent but rather poorly studied topic worldwide. Actually, such an effort lies at the crossroads of various fields of inquiry. Those include conservation of local honey bee diversity, breeding various local stocks for desirable traits, and enabling resilient ecosystem services. With the ever-increasing availability of genomic tools, now it is more probable than ever to simultaneously fill such gaps. Current knowledge and growing awareness on honey bee diversity in Turkey let us progress into a more systematic utilization of this resource through development of climate-conscious models. Here we provide a framework that takes genomic diversity into account for assessing and monitoring various aspects of species’ response to climate change which can potentially lead to drastic impacts.
Global change, adaptive capacity, Long-term monitoring, whole genome sequencing, natural selection
  • Aykanat, T., Lindqvist, M., Pritchard, V. L., & Primmer, C. R. (2016). From population genomics to conservation and management: a workflow for targeted analysis of markers identified using genome‐wide approaches in Atlantic salmon Salmo salar. Journal of Fish Biology, 89, 2658-2679. doi:10.1111/jfb.13149
  • Beekman, M., Allsopp, M. H., Wossler, T. C., & Oldroyd, B. P. (2008). Factors affecting the dynamics of the honey bee (Apis mellifera) hybrid zone of South Africa. Heredity, 100(1), 13–18. http://doi.org/10.1038/sj.hdy.6801058
  • Bilgin, C. C. & Türkeş, M. (2008). Turkey Country Report. In: R. Laušević, L. Jones-Walters, A. Nieto & A. Torre-Marín (Eds.), Climate change and biodiversity in South-East Europe: a concise summary of the scientific and policy context, issues and recommended actions (pp. 50-55). REC, Szentendre, Hungary; ECNC, Tilburg, the Netherlands
  • Bilgin, C. C. (2013). Türkiye’nin doğası iklim değişikliğinden nasıl etkilenecek? ODTÜ SEM Dönem Arası Seminerleri, 29-31 Ocak 2013, Ankara.
  • Chen, C., Liu, Z., Pan, Q., Chen, X., Wang, H., Guo, H., ... & Shi, W. (2016). Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp. Molecular Biology and Evolution, 33(5), 1337-1348.
  • Coroian, C. O., Muñoz, I., Schlüns, E. A., Paniti‐Teleky, O. R., Erler, S., Furdui, E. M., ... & Moritz, R. F. (2014). Climate rather than geography separates two European honey bee subspecies. Molecular Ecology, 23(9), 2353-2361.
  • COST Committee of Senior Officials, (2018). Memorandum of Understanding for the implementation of the COST Action “Genomic Biodiversity Knowledge for Resilient Ecosystems” (G-BIKE) CA18134. https://e-services.cost.eu/files/domain_files/CA/Action_CA18134/mou/CA18134-e.pdf
  • Cridland, J. M., Tsutsui, N. D., & Ramírez, S. R. (2017). The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis mellifera. Genome Biology and Evolution, 9(2), 457-472.
  • De la Rua, P., Jaffé, R., Dall'Olio, R., Muñoz, I., & Serrano, J. (2009). Biodiversity, conservation and current threats to European honey bees. Apidologie, 40(3), 263-284.
  • De la Rúa, P., Jaffé, R., Muñoz, I., Serrano, J., Moritz, R. F. A., & Kraus, F. B. (2013). Conserving genetic diversity in the honeybee: Comments on Harpur et al. (2012). Molecular Ecology, 22, 3208-3210. doi:10.1111/mec.12333
  • Espregueira, G., Rey-Iglesia, A., Robles Tascón, L., Jensen, A. B., da Fonseca, R., & Campos, P. F. (2020). Declining genetic diversity of European honeybees along the twentieth century. Scientific Reports, 10, 10520. https://doi.org/10.1038/s41598-020-67370-2
  • Flanagan, S. P., Forester, B. R., Latch, E. K., Aitken, S. N., & Hoban, S. (2018). Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evolutionary Applications, 11, 1035-1052. https://doi.org/10.1111/eva.12569
  • Feder, J. L., & Nosil, P. (2010). The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution, 64(6), 1729-1747.
  • Fordham, D. A., Akçakaya, H. R., Araújo, M. B., Keith, D. A., & Brook, B. W. (2013). Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography, 36(9), 956–964. http://doi.org/10.1111/j.1600-0587.2013.00147.x
  • Fuller, Z. L., Niño, E. L., Patch, H. M., Bedoya-Reina, O. C., Baumgarten, T., Muli, E., ... & Masiga, D. (2015). Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools. BMC genomics, 16(1), 518.
  • González-Varo, J. P., Biesmeijer, J. C., Bommarco, R., Potts, S. G., Schweiger, O., Smith, H. G., ... & Vilà, M. (2013). Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology & Evolution, 28(9), 524-530.
  • Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229).
  • Gül, A. (2020). Islah çalışmalarımız: “Türkiye’de Bulunan Bazı Arı (Apis mellifera L.) Irk ve Genotiplerini Temsil Eden Kolonilerin Orijinal Alanlarında Morfolojik ve Moleküler Karakterizasyonu ve Belirli Karakterler Yönünden İyileştirilmesi” projesi. TAB Arıcılık Dergisi, 3, 8-9.
  • Henriques, D., Wallberg, A., Chávez-Galarza, J., Johnston J., Webster M., & Pinto M. (2018). Whole genome SNP-associated signatures of local adaptation in honey bees of the Iberian Peninsula. Scientific Reports, 8(1), 11145. doi: 10.1038/s41598-018-29469-5.
  • Honey Bee Genome Sequencing Consortium (2006). Insights into social insects from the genome of the honey bee Apis mellifera. Nature, 443(7114), 931–949. https://doi.org/10.1038/nature05260
  • Jensen, A. B., Palmer, K. A., Boomsma, J. J., & Pedersen, B. V. (2005), Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe. Molecular Ecology, 14, 93-106. doi:10.1111/j.1365-294X.2004.02399.x
  • Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological invasions, 13(12), 2785-2797.
  • Jones, M. R., Forester, B. R., Teufel, A. I., Adams, R. V., Anstett, D. N., Goodrich, B. A., … Manel, S. (2013). Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations. Evolution, 67(12), 3455–3468. http://doi.org/10.1111/evo.12237
  • Kozak, K. H., Graham, C. H., & Wiens, J. J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology and Evolution, 23(3), 141–148. http://doi.org/10.1016/j.tree.2008.02.001
  • Kükrer, M. (2013). Genetic diversity of honey bee populations in Turkey based on microsatellite markers: a comparison between migratory versus stationary apiaries and isolated regions versus regions open to migratory beekeeping (M.Sc. Thesis), METU, Ankara, Turkey.
  • Kükrer, M., Kence, M., & Kence, A. (2020). Honey Bee Diversity is Swayed by Migratory Beekeeping and Trade Despite Conservation Practices: Genetic Evidences for the Impact of Anthropogenic Factors on Population Structure. bioRxiv doi: 10.1101/154195
  • Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27(2), 499-510.
  • Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: Combining landscape ecology and population genetics. Trends in Ecology and Evolution, 18(4), 189–197. http://doi.org/10.1016/S0169-5347(03)00008-9
  • Nelson, R. M., Wallberg, A., Simões, Z. L. P., Lawson, D. J., & Webster, M. T. (2017). Genome‐wide analysis of admixture and adaptation in the Africanized honey bee. Molecular Ecology, 26(14), 3603-3617.
  • Oskay, D., Kükrer, M., & Kence, A. (2019). Muğla Bal Arısında (Apis mellifera anatoliaca) Amerikan Yavru Çürüklüğü Hastalığına Karşı Direnç Geliştirilmesi. Arıcılık Araştırma Dergisi, 11(1), 8-20.
  • Peterson, A. T. (2003). Predicting the geography of species’ invasions via ecological niche modeling. The quarterly review of biology, 78(4), 419-433.
  • Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345-353.
  • Savolainen, O., Lascoux, M., & Merilä, J. (2013). Ecological genomics of local adaptation. Nature Reviews. Genetics, 14(11), 807–820. http://doi.org/10.1038/nrg3522
  • Sillero, N. (2011). What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecological Modelling, 222(8), 1343-1346.
  • Soland-Reckeweg, G., Heckel, G., Neumann, P., Fluri, P., & Excoffier L. (2009). Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera. Journal of Insect Conservation, 13, 317. https://doi.org/10.1007/s10841-008-9175-0
  • Van der Zee, R., Gray, A., Pisa, L., & de Rijk, T. (2015). An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors. PLoS ONE, 10(7), e0131611. https://doi.org/10.1371/journal.pone.0131611
  • Wallberg, A., Han, F., Wellhagen, G., Dahle, B., Kawata, M., Haddad, N., … Webster, M. T. (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honey bee Apis mellifera. Nature Genetics, 46(August), 1081-1088. http://doi.org/10.1038/ng.3077
  • Wallberg, A., Schöning, C., Webster, M. T., & Hasselmann, M. (2017). Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees. PLoS Genetics, 13(5), e1006792.
  • Whitfield, C. W., Behura, S. K., Berlocher, S. H., Clark, A. G., Johnston, J. S., Sheppard, W. S., … Tsutsui, N. D. (2006). Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science (New York, N.Y.), 314(5799), 642–645. http://doi.org/10.1126/science.1132772
Primary Language en
Subjects Agriculture
Journal Section Review
Authors

Orcid: 0000-0003-1755-1119
Author: Mert KÜKRER (Primary Author)
Institution: ORTA DOĞU TEKNİK ÜNİVERSİTESİ
Country: Turkey


Author: C. Can BİLGİN
Institution: ORTA DOĞU TEKNİK ÜNİVERSİTESİ
Country: Turkey


Supporting Institution Middle East Technical University
Project Number project no: 2007-16-12-00-3008
Thanks This study was funded by Middle East Technical University Revolving Funds (project no: 2007‐16‐12‐00‐3008).
Dates

Application Date : June 6, 2020
Acceptance Date : July 28, 2020
Publication Date : July 31, 2020

APA Kükrer, M , Bi̇lgi̇n, C . (2020). Climate Change Prompts Monitoring and Systematic Utilization of Honey Bee Diversity in Turkey . Bee Studies , 12 (1) , 17-23 . Retrieved from https://dergipark.org.tr/en/pub/bst/issue/56349/748666