Research Article
BibTex RIS Cite

Tematik STEM Eğitimi Uygulaması: Sürtünme Kuvveti Örneği

Year 2020, Volume: 37 , 3 - 21, 17.12.2020

Abstract

STEM eğitimine verilen önem artış eğilimindedir. STEM eğitiminin öneminin artması ile birlikte öğretmenlerin STEM eğitimi uygulamalarına ihtiyacı ortaya çıkmaktadır. Bu çalışmada beşinci sınıf fen bilimleri dersi sürtünme kuvveti konusunda, Türkiye, Doğu Karadeniz Bölgesi’nde yaşanan gerçek yaşam problem durumu ile başlayan, öğrencilerin mühendislik tasarım sürecini ve bilimsel araştırma sürecini işe koşabilecekleri tematik STEM etkinliğinin tasarlanması, uygulaması ve değerlendirilmesinin sunulması amaçlanmıştır. Çalışma kapsamında tasarlanan etkinlik için öncelikle uzman görüşüne başvurulmuş ve geri dönütler doğrultusunda düzenlenerek, bir fen bilimleri öğretmeni tarafından ve araştırmacı rehberliğinde, 2018-2019 eğitim öğretim yılında 24 beşinci sınıf öğrencisi ile uygulanmıştır. Uygulama sürecine ilişkin uzman, araştırmacı ve öğretmen görüşleri değerlendirilmiştir. Değerlendirmeler sonucunda etkinliğin uygulanabilir olduğu fakat süre, mühendislik tasarım süreci, öğrencileri hazırlama ve süreci yürütme açısından uygulama sürecinde dikkat edilmesi gereken durumlar olduğu sonucuna varılmıştır. Farklı öğrenci grubu, konu ve kazanımlara uyarlanabileceği konusunda öneriler sunulmuştur.

References

  • Baran E., Canbazoğlu Bilici S. ve Mesutoğlu C. (2015). Fen, teknoloji, mühendislik ve matematik (FeTeMM) spotu geliştirme. Araştırma Temelli Etkinlik Dergisi, 5(2), 60-69.
  • Bozkurt Altan, E. ve Hacıoğlu, Y. (2018). Fen bilimleri öğretmenlerinin derslerinde STEM odaklı etkinlikler gerçekleştirmek üzere geliştirdikleri problem durumlarının incelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 12(2), 487–507.
  • Bozkurt Altan, E. ve Karahan, E. (2019). Tasarım temelli fen eğitimine yönelik öğrenci ve öğretmen değerlendirmeleri: Isı yalıtımı ülke kazanımı etkinliği. İlköğretim Online, 18(3), 1345-1366.
  • Bozkurt Altan, E. (2017). Fen, teknoloji, mühendislik ve matematik (FeTeMM-STEM) eğitimi. H. G. Hastürk (Haz.), Teoriden pratiğe fen bilimleri öğretimi (s. 354-388). Ankara: Pegem Yayıncılık.
  • Bozkurt, E. (2014). Mühendislik tasarım temelli fen eğitiminin fen bilgisi ̇öğretmen adaylarının karar verme becerisi̇, bilimsel süreç becerileri̇ ve sürece yönelik algılarına etkisi̇ (Yayınlanmamış doktora tezi). Gazi Üniversitesi, Ankara.
  • Branch, R. M. (2009). Instructional design: The ADDIE approach (Vol. 722). New York: Springer Science & Business Media.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C. ve Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Bybee, R. W. (2010). What is STEM education? Science, 329(5995), 996.
  • Chiu, A., Price, A. C. ve Ovrahim, E. (2015). Supporting elementary and middle school STEM education. Chicago: Museum of Science and Industry. Erişim adresi https://www.msichicago.org/fileadmin/assets/educators/science_leadership_initiative/SLI_Lit_Review.pdf
  • Corbett, K. S. ve Coriell, J. M. (2014). STEM explore, discover, apply – a middle school elective (curriculum exchange). 2014 ASEE Annual Conference’de sunulan bildiri, Indianapolis, Indiana. Erişim adresi https://peer.asee.org/23034.
  • Davies, T. ve Gilbert, J. (2003). Modelling: Promoting creativity while forging links between science education and design and technology education. Canadian Journal of Science, Mathematics and Technology Education, 3(1), 67–82.
  • Drake, S. ve Burns, R. (2004). Meeting standards through integrated curriculum. Virginia: Association for Supervision and Curriculum Development (ASCD).
  • Dugger, J. C. ve Meier, R. L. (1994). A comparison of second-year principles of technology and high school physics student achievement using a principles of technology achievement test. Journal of Technology Education, 5(2), 5-14.
  • Dugger, W. E. (2010). Evolution of STEM in the United States. 6. Biennial International Conference on Technology Education Research‘de sunulan bildiri, Queensland, Avusturalya.
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1-8.
  • English, L. D. ve King, D. (2018). STEM integration in sixth grade: Designing and constructing paper bridges. International Journal of Science and Mathematics, 17, 863–884.
  • Felix, A. (2016). Design-based science and higher order thinking (Yayınlanmamış doktora tezi). Virginia Polytechnic Institute and State University, Virginia.
  • Felix, A. L. (2010). Design-based science for STEM student recruitment and teacher professional development. Mid-Atlantic ASEE Conference, Villanova University.
  • Fogarty, R. (1991). Ten ways to integrate curriculum. Educational Leadership, 49(2), 61-65.
  • Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W. ve Mamlok-Naaman, R. (2004). Design- based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.
  • Furner, J. ve Kumar, D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science and Technology, 3(3), 185-189.
  • Grady, J. B. (1994). Interdisciplinary curriculum: A fusion of reform ideas. Colorado: Mid-Continental Regional Educational Laboratory.
  • Gülhan, F. ve Şahin, F. (2018). Activity implementation intended for STEAM (STEM+ Art) education: Mirrors and light. Journal of Inquiry Based Activities, 8(2), 111-126.
  • Güneş, B. (2017). Fizikte kavram yanılgıları. Palme Yayıncılık: Ankara.
  • Hacıoğlu, Y. (2017). Fen, teknoloji, mühendislik ve matematik (STEM) eğitimi temelli etkinliklerin fen bilgisi öğretmen adaylarının eleştirel ve yaratıcı düşünme becerilerine etkisi (Yayınlanmamış doktora tezi). Gazi Üniversitesi, Ankara.
  • Hacıoğlu, Y. (2019). Teknolojik tasarım temelli fen eğitimi. D. Akgündüz (Haz.), Fen ve matematik eğitiminde teknolojik yaklaşımlar (s. 521-550). Ankara: Anı Yayıncılık.
  • Hacıoğlu, Y., Yamak, H. ve Kavak, N. (2017). The opinions of prospective science teachers regarding STEM education: The engineering design based science education. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(2), 649-684.
  • Hallström, J. ve Schönborn, K. J. (2019). Models and modelling for authentic STEM education: Reinforcing the argument. International Journal of STEM Education, 6(22), 1-10.
  • Herdem, K. ve Ünal, İ. (2018). STEM eğitimi üzerine yapılan çalışmaların analizi: Bir meta-sentez çalışması. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 48, 145-163.
  • Honey, M., Pearson, G. ve Schweingruber, H. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington DC: National Academy of Engineering and National Research Council The National Academies Press.
  • Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D. ve Carberry, A. (2011). Infusing engineering design into high school STEM courses. Erişim adresi http://ncete.org/flash/pdfs/Infusing%20Engineering%20Hynes.pdf.
  • International Technology Educators Association [ITEA]. (1996). Technology for All Americans: A rationale and structure for the study of technology. Reston, VA.
  • İşler, A.Ş. (2004). Sanat eğitiminde disiplinlerarası tematik yaklaşım. Milli Eğitim Dergisi, 163, 43-54.
  • Jacobs, H. H. (1989). Design options for an ıntegrated curriculum. H. H. Jacobs (Haz.), Interdisciplinary curriculum: Design and implementation (s. 12-24). Association for Supervision and Curriculum Development (ASCD). Erişim adresi http://files.eric.ed.gov/fulltext/ED316506.pdf.
  • Jones, V. (2013). Teaching STEM: Design literacy strategies. Capture natural curiosity. Children's Technology and Engineering, 18(1), 28-30.
  • Jones, B. F., Rasmussen, C. M. ve Moffitt, M. C. (1997). Real-life problem solving: A collaborative approach to interdisciplinary learning. American Psychological Association.
  • Katehi, L., Pearson, G. ve Feder, M. (2009). Engineering in K-12 education understanding the status and improving the prospects. Washington, DC: National Academy of Engineering [NAE] & National Research Council [NRC] National Academies Press.
  • Kitchen, J. A., Sonnert, G. ve Sadler, P. M. (2018). The impact of college- and university-run high school summer programs on students’ end of high school STEM career aspirations. Science Education, 1, 1–9.
  • Kolodner, J. L. (2002). Facilitating the learning of design practices: Lessons learned from an inquiry into science education. Journal of Industrial Teacher Education, 39(3), 9-40.
  • Kurup, P. M., Li, X., Powell, G. ve Brown, M. (2019). Building future primary teachers' capacity in STEM: Based on a platform of beliefs, understandings and intentions. International Journal of STEM Education, 6(10).
  • Lederman, N. G. ve Niess, M. L. (1997). Integrated, interdisciplinary, or thematic instruction? Is this a question or is it quastionable semantics? School Science and Mathematics, 97(2), 57-58.
  • Lemons, G., Carberry, A., Swan, C., Jarvin, L. ve Rogers, C. (2010). The benefits of model building in teaching engineering design. Design Studies, 31(3), 288–309.
  • Lewis, T. (2006). Design and inquiry: Bases for an accommodation between science and technology education in the curriculum? Journal of Research in Science Teaching, 43(3), 255-281
  • Little, R., Poth, R., Gilbert, R. ve Barger, M. (2005). Adapting the engineering design process for elementary education applications. 2005 Annual Conference’de sunulan bildiri, Portland, Oregon. Erişim adresi https://peer.asee.org/15533
  • Loepp, F. L. (2004). Standards: Mathematics and science compared to technological literacy. Journal of Technology Studies, 1, 2-10.
  • Mehalik, M. M., Doppelt, Y. ve Schunn, C. D. (2008). Middle-school science through design- based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71-85.
  • Milli Eğitim Bakanlığı (2018). Fen bilimleri dersi öğretim programı (ilkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Devlet Kitapları.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W. ve Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. Ş. Purzer, J. Strobel ve M. E. Cardella (Haz.), Engineering in pre-college settings: Synthesizing research, policy, and practices (s. 35-60). West Lafayette: Purdue University.
  • National Academy of Engineering [NAE]. (2010). Standards for K-12 engineering education? Washington, DC: National Academies.
  • National Research Council [NRC]. (2012). A Framework for k-12 sciece education: Practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press.
  • Ostler, E. (2012). 21st century STEM education: A tactical model for long-range success. International Journal of Applied Science and Technology, 2(1), 28-33.
  • Park, D., Park, M. ve Bates, A. (2018). Exploring young children’s understanding about the concept of volume through engineering design in a STEM activity: A case study. International Journal of Science and Mathematics Education, 16(2), 275-294.
  • Petrie, H. (1992). Interdisciplinary education: Are we faced with insurmountable opportunities? Review of Research in Education, 18, 299-333.
  • Sadler, P. M., Coyle, H. P. ve Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. The Journal of the Learning Sciences, 9(3), 299-327.
  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26.
  • Sargianis, K., Sylvia, J. ve Chandler, J. (2014). Green engineering in the elementary classroom. http://eeweek.org/sites/default/files/EiEWebinar_slides.pdf
  • Shah, A. M., Wylie, C., Gitomer, D. ve Noam, G. (2018). Improving STEM program quality in out- of-school time: Tool development and validation. Science Education, 1, 1–22.
  • Silk, E. M., Schunn, C. D. ve Cary, M. S. (2009). The impact of an engineering design curriculum on science reasoning in an urban setting. Journal of Science Education and Technology, 18(3), 209-223. http://dx.doi.org/10.1007/s10956-009-9144-8
  • Smith, J. ve Karr-Kidwell, P. J. (2000). The interdisciplinary curriculum: A literary review and a manual for administrators and teachers. Erişim adresi http://files.eric.ed.gov/fulltext/ED443172.pdf.
  • Smith, K. A. (2006). The effect of an integrated high school science curriculum on student achievement, knowledge retention, and science attitudes (Yayınlanmamış doktora tezi). University of Missouri, Kansas City.
  • Thomas, T. A. (2014). Elementary teachers’ receptivity to integrated science, technology,engineering, and mathematics (STEM) education in the elementary grades (Yayınlanmamış doktora tezi). University of Nevada, Reno.
  • Tress, B., Tress, G. ve Fry, G. (2005). Researchers’ experiences, positive and negative, in integrative landscape projects. Environmental Management, 36(6), 792-807.
  • Tress, G., Tress, B. ve Fry, G. (2006). Publishing integrative landscape research: Analysis of editorial policies of peer-reviewed journals. Environmental Science & Policy, 9(5), 466-475.
  • Wells, J. G. (2010). Research on teaching and learning in science education: Potentials in technology education. P. Reed ve J. LaPorte (Haz.), Research in technology education (s. 192-217). Muncie, IN: Ball State University.
  • Williams, J. (2011). STEM education: Proceed with caution. Design and Technology Education, 16(1), 26-35.

Implementation of Thematic STEM Education: Friction Force Example

Year 2020, Volume: 37 , 3 - 21, 17.12.2020

Abstract

The importance given to STEM education tends to increase. Therefore, the need for STEM education practices of teachers is emerging. This study aimed to design, implement and evaluate a STEM activity in which students could apply the engineering design process and the scientific research process that begins with a real-life problem situation experienced in the Eastern Black Sea Region. Regarding the activity designed within the scope of the study, an expert was first consulted, and the activity was organized in accordance with the feedback obtained from the expert. It was then implemented by a science teacher with 24 fifth-graders in the 2018-2019 academic year, under the guidance of the researcher. Opinions of the expert, the researcher, and the teacher in relation to the application process were evaluated. It was concluded that although the activity was in general feasible to implement, there were certain issues to consider in terms of duration of the activity, the engineering design process, preparing the students and conducting the process. Suggestions are presented to adapt the activity to different student groups, topics, and objectives. 

References

  • Baran E., Canbazoğlu Bilici S. ve Mesutoğlu C. (2015). Fen, teknoloji, mühendislik ve matematik (FeTeMM) spotu geliştirme. Araştırma Temelli Etkinlik Dergisi, 5(2), 60-69.
  • Bozkurt Altan, E. ve Hacıoğlu, Y. (2018). Fen bilimleri öğretmenlerinin derslerinde STEM odaklı etkinlikler gerçekleştirmek üzere geliştirdikleri problem durumlarının incelenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 12(2), 487–507.
  • Bozkurt Altan, E. ve Karahan, E. (2019). Tasarım temelli fen eğitimine yönelik öğrenci ve öğretmen değerlendirmeleri: Isı yalıtımı ülke kazanımı etkinliği. İlköğretim Online, 18(3), 1345-1366.
  • Bozkurt Altan, E. (2017). Fen, teknoloji, mühendislik ve matematik (FeTeMM-STEM) eğitimi. H. G. Hastürk (Haz.), Teoriden pratiğe fen bilimleri öğretimi (s. 354-388). Ankara: Pegem Yayıncılık.
  • Bozkurt, E. (2014). Mühendislik tasarım temelli fen eğitiminin fen bilgisi ̇öğretmen adaylarının karar verme becerisi̇, bilimsel süreç becerileri̇ ve sürece yönelik algılarına etkisi̇ (Yayınlanmamış doktora tezi). Gazi Üniversitesi, Ankara.
  • Branch, R. M. (2009). Instructional design: The ADDIE approach (Vol. 722). New York: Springer Science & Business Media.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C. ve Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Bybee, R. W. (2010). What is STEM education? Science, 329(5995), 996.
  • Chiu, A., Price, A. C. ve Ovrahim, E. (2015). Supporting elementary and middle school STEM education. Chicago: Museum of Science and Industry. Erişim adresi https://www.msichicago.org/fileadmin/assets/educators/science_leadership_initiative/SLI_Lit_Review.pdf
  • Corbett, K. S. ve Coriell, J. M. (2014). STEM explore, discover, apply – a middle school elective (curriculum exchange). 2014 ASEE Annual Conference’de sunulan bildiri, Indianapolis, Indiana. Erişim adresi https://peer.asee.org/23034.
  • Davies, T. ve Gilbert, J. (2003). Modelling: Promoting creativity while forging links between science education and design and technology education. Canadian Journal of Science, Mathematics and Technology Education, 3(1), 67–82.
  • Drake, S. ve Burns, R. (2004). Meeting standards through integrated curriculum. Virginia: Association for Supervision and Curriculum Development (ASCD).
  • Dugger, J. C. ve Meier, R. L. (1994). A comparison of second-year principles of technology and high school physics student achievement using a principles of technology achievement test. Journal of Technology Education, 5(2), 5-14.
  • Dugger, W. E. (2010). Evolution of STEM in the United States. 6. Biennial International Conference on Technology Education Research‘de sunulan bildiri, Queensland, Avusturalya.
  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1-8.
  • English, L. D. ve King, D. (2018). STEM integration in sixth grade: Designing and constructing paper bridges. International Journal of Science and Mathematics, 17, 863–884.
  • Felix, A. (2016). Design-based science and higher order thinking (Yayınlanmamış doktora tezi). Virginia Polytechnic Institute and State University, Virginia.
  • Felix, A. L. (2010). Design-based science for STEM student recruitment and teacher professional development. Mid-Atlantic ASEE Conference, Villanova University.
  • Fogarty, R. (1991). Ten ways to integrate curriculum. Educational Leadership, 49(2), 61-65.
  • Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W. ve Mamlok-Naaman, R. (2004). Design- based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.
  • Furner, J. ve Kumar, D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science and Technology, 3(3), 185-189.
  • Grady, J. B. (1994). Interdisciplinary curriculum: A fusion of reform ideas. Colorado: Mid-Continental Regional Educational Laboratory.
  • Gülhan, F. ve Şahin, F. (2018). Activity implementation intended for STEAM (STEM+ Art) education: Mirrors and light. Journal of Inquiry Based Activities, 8(2), 111-126.
  • Güneş, B. (2017). Fizikte kavram yanılgıları. Palme Yayıncılık: Ankara.
  • Hacıoğlu, Y. (2017). Fen, teknoloji, mühendislik ve matematik (STEM) eğitimi temelli etkinliklerin fen bilgisi öğretmen adaylarının eleştirel ve yaratıcı düşünme becerilerine etkisi (Yayınlanmamış doktora tezi). Gazi Üniversitesi, Ankara.
  • Hacıoğlu, Y. (2019). Teknolojik tasarım temelli fen eğitimi. D. Akgündüz (Haz.), Fen ve matematik eğitiminde teknolojik yaklaşımlar (s. 521-550). Ankara: Anı Yayıncılık.
  • Hacıoğlu, Y., Yamak, H. ve Kavak, N. (2017). The opinions of prospective science teachers regarding STEM education: The engineering design based science education. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 37(2), 649-684.
  • Hallström, J. ve Schönborn, K. J. (2019). Models and modelling for authentic STEM education: Reinforcing the argument. International Journal of STEM Education, 6(22), 1-10.
  • Herdem, K. ve Ünal, İ. (2018). STEM eğitimi üzerine yapılan çalışmaların analizi: Bir meta-sentez çalışması. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 48, 145-163.
  • Honey, M., Pearson, G. ve Schweingruber, H. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington DC: National Academy of Engineering and National Research Council The National Academies Press.
  • Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D. ve Carberry, A. (2011). Infusing engineering design into high school STEM courses. Erişim adresi http://ncete.org/flash/pdfs/Infusing%20Engineering%20Hynes.pdf.
  • International Technology Educators Association [ITEA]. (1996). Technology for All Americans: A rationale and structure for the study of technology. Reston, VA.
  • İşler, A.Ş. (2004). Sanat eğitiminde disiplinlerarası tematik yaklaşım. Milli Eğitim Dergisi, 163, 43-54.
  • Jacobs, H. H. (1989). Design options for an ıntegrated curriculum. H. H. Jacobs (Haz.), Interdisciplinary curriculum: Design and implementation (s. 12-24). Association for Supervision and Curriculum Development (ASCD). Erişim adresi http://files.eric.ed.gov/fulltext/ED316506.pdf.
  • Jones, V. (2013). Teaching STEM: Design literacy strategies. Capture natural curiosity. Children's Technology and Engineering, 18(1), 28-30.
  • Jones, B. F., Rasmussen, C. M. ve Moffitt, M. C. (1997). Real-life problem solving: A collaborative approach to interdisciplinary learning. American Psychological Association.
  • Katehi, L., Pearson, G. ve Feder, M. (2009). Engineering in K-12 education understanding the status and improving the prospects. Washington, DC: National Academy of Engineering [NAE] & National Research Council [NRC] National Academies Press.
  • Kitchen, J. A., Sonnert, G. ve Sadler, P. M. (2018). The impact of college- and university-run high school summer programs on students’ end of high school STEM career aspirations. Science Education, 1, 1–9.
  • Kolodner, J. L. (2002). Facilitating the learning of design practices: Lessons learned from an inquiry into science education. Journal of Industrial Teacher Education, 39(3), 9-40.
  • Kurup, P. M., Li, X., Powell, G. ve Brown, M. (2019). Building future primary teachers' capacity in STEM: Based on a platform of beliefs, understandings and intentions. International Journal of STEM Education, 6(10).
  • Lederman, N. G. ve Niess, M. L. (1997). Integrated, interdisciplinary, or thematic instruction? Is this a question or is it quastionable semantics? School Science and Mathematics, 97(2), 57-58.
  • Lemons, G., Carberry, A., Swan, C., Jarvin, L. ve Rogers, C. (2010). The benefits of model building in teaching engineering design. Design Studies, 31(3), 288–309.
  • Lewis, T. (2006). Design and inquiry: Bases for an accommodation between science and technology education in the curriculum? Journal of Research in Science Teaching, 43(3), 255-281
  • Little, R., Poth, R., Gilbert, R. ve Barger, M. (2005). Adapting the engineering design process for elementary education applications. 2005 Annual Conference’de sunulan bildiri, Portland, Oregon. Erişim adresi https://peer.asee.org/15533
  • Loepp, F. L. (2004). Standards: Mathematics and science compared to technological literacy. Journal of Technology Studies, 1, 2-10.
  • Mehalik, M. M., Doppelt, Y. ve Schunn, C. D. (2008). Middle-school science through design- based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71-85.
  • Milli Eğitim Bakanlığı (2018). Fen bilimleri dersi öğretim programı (ilkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Devlet Kitapları.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W. ve Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. Ş. Purzer, J. Strobel ve M. E. Cardella (Haz.), Engineering in pre-college settings: Synthesizing research, policy, and practices (s. 35-60). West Lafayette: Purdue University.
  • National Academy of Engineering [NAE]. (2010). Standards for K-12 engineering education? Washington, DC: National Academies.
  • National Research Council [NRC]. (2012). A Framework for k-12 sciece education: Practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press.
  • Ostler, E. (2012). 21st century STEM education: A tactical model for long-range success. International Journal of Applied Science and Technology, 2(1), 28-33.
  • Park, D., Park, M. ve Bates, A. (2018). Exploring young children’s understanding about the concept of volume through engineering design in a STEM activity: A case study. International Journal of Science and Mathematics Education, 16(2), 275-294.
  • Petrie, H. (1992). Interdisciplinary education: Are we faced with insurmountable opportunities? Review of Research in Education, 18, 299-333.
  • Sadler, P. M., Coyle, H. P. ve Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. The Journal of the Learning Sciences, 9(3), 299-327.
  • Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26.
  • Sargianis, K., Sylvia, J. ve Chandler, J. (2014). Green engineering in the elementary classroom. http://eeweek.org/sites/default/files/EiEWebinar_slides.pdf
  • Shah, A. M., Wylie, C., Gitomer, D. ve Noam, G. (2018). Improving STEM program quality in out- of-school time: Tool development and validation. Science Education, 1, 1–22.
  • Silk, E. M., Schunn, C. D. ve Cary, M. S. (2009). The impact of an engineering design curriculum on science reasoning in an urban setting. Journal of Science Education and Technology, 18(3), 209-223. http://dx.doi.org/10.1007/s10956-009-9144-8
  • Smith, J. ve Karr-Kidwell, P. J. (2000). The interdisciplinary curriculum: A literary review and a manual for administrators and teachers. Erişim adresi http://files.eric.ed.gov/fulltext/ED443172.pdf.
  • Smith, K. A. (2006). The effect of an integrated high school science curriculum on student achievement, knowledge retention, and science attitudes (Yayınlanmamış doktora tezi). University of Missouri, Kansas City.
  • Thomas, T. A. (2014). Elementary teachers’ receptivity to integrated science, technology,engineering, and mathematics (STEM) education in the elementary grades (Yayınlanmamış doktora tezi). University of Nevada, Reno.
  • Tress, B., Tress, G. ve Fry, G. (2005). Researchers’ experiences, positive and negative, in integrative landscape projects. Environmental Management, 36(6), 792-807.
  • Tress, G., Tress, B. ve Fry, G. (2006). Publishing integrative landscape research: Analysis of editorial policies of peer-reviewed journals. Environmental Science & Policy, 9(5), 466-475.
  • Wells, J. G. (2010). Research on teaching and learning in science education: Potentials in technology education. P. Reed ve J. LaPorte (Haz.), Research in technology education (s. 192-217). Muncie, IN: Ball State University.
  • Williams, J. (2011). STEM education: Proceed with caution. Design and Technology Education, 16(1), 26-35.
There are 65 citations in total.

Details

Primary Language Turkish
Journal Section Original Articles
Authors

Yasemin Hacıoğlu This is me

Publication Date December 17, 2020
Published in Issue Year 2020 Volume: 37

Cite

APA Hacıoğlu, Y. (2020). Tematik STEM Eğitimi Uygulaması: Sürtünme Kuvveti Örneği. Bogazici University Journal of Education, 37, 3-21.