Research Article
BibTex RIS Cite

Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex

Year 2019, Volume: 15 Issue: 1, 95 - 98, 22.03.2019
https://doi.org/10.18466/cbayarfbe.480872

Abstract

A
cationic N-heterocyclic carbene copper(I) complex was prepared and
characterized by FT-IR, 1H NMR, 13C NMR, elemental
analysis and ESI/TOF mass spectrometry methods. Catalytic performances of the
complex were studied in the [3+2] cycloaddition reaction of some azides and
alkynes

References

  • 1. Arduengo III, AJ, Dias, HVR, Calabrese, JC, Davidson, F. 1993. Homoleptic carbene-silver(I) and carbene-copper(I) complexes. Organometallics; 12: 3405-3409.
  • 2. Trose, M, Nahra, F, Poater, A, Cordes, DB, Slawin, AMZ, Cavallo, L, Cazin, CSJ. 2017. Investigating the structure and reactivity of azolyl-based copper(I)–NHC complexes: The role of the anionic ligand. ACS Catalysis; 7: 8176-8183.
  • 3. Delvos, LB, Oestreich, M. 2015. Temperature-dependent direct enantioconvergent silylation of a racemic cyclic allylic phosphate by copper(I) catalyzed allylic substitution. Synthesis-Stuttgart; 47: 924-933.
  • 4. Delp, SA, Munro-Leighton, C, Goj, LA, Ramirez, MA, Gunnoe, TB, Petersen, JL, Boyle, PD. 2007. Addition of S−H bonds across electron-deficient olefins catalyzed by well-defined copper(I) thiolate complexes. Inorganic Chemistry; 46: 2365-2367.
  • 5. Jang, H, Zhugralin, AR, Lee, Y, Hoveyda, AH. 2011. Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC–Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity. Journal of American Chemical Society; 133: 7859-7871.
  • 6. Wang, W, Zhang, G, Lang, R, Xia, C, Li, F. 2013. pH-responsive N-heterocyclic carbene copper(I) complexes: syntheses and recoverable applications in the carboxylation of arylboronic esters and benzoxazole with carbon dioxide. Green Chemistry; 15: 635-640.
  • 7. Lewis, WG, Green, LG, Radic, Z, Carlier, PR, Taylor, P, Finn, MG, Sharpless, KB. 2002. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angewandte Chemie International Edition; 41: 1053-1057.
  • 8. Whiting, M, Muldoon, J, Lin, Y-C, Silverman, SM, Lindstrom, W, Olson, AJ, Kolb, HC, Finn, MG, Sharpless, KB, Elder, JH. 2006. Inhibitors of HIV‐1 protease by using In situ Click chemistry. Angewandte Chemie International Edition; 45: 1435-1439.
  • 9. Demir Atlı, D. 2018. Synthesis and characterization of benzimidazolium salts bearing triazole groups. Celal Bayar University Journal of Science; 14: 57-60.
  • 10. Golas, PL, Tsarevsky, NV, Matyjaszewski, K. 2008. Structure-reactivity correlation in Click chemistry: Substituent effect on azide reactivity. Macromolecular Rapid Communications; 29: 1167-1171.
  • 11. Pasupuleti, BG, Bez, G. 2019. CuI/L-proline catalyzed click reaction in glycerol for the synthesis of 1,2,3-triazoles. Tetrahedron Letters; 60: 142-146.
  • 12. Nia, AS, Rana, S, Döhler, D, Jirsa, F, Meister, A, Guadagno, L, Koslowski, E, Bron, M, Binder, WH. 2015. Carbon‐supported copper nanomaterials: Recyclable catalysts for Huisgen [3+2] cycloaddition reactions. Chemistry-A European Journal; 21: 10763-10770.
  • 13. Diez-Gonzalez, S, Escudero-Adan, EC, Benet-Buchholz, J, Stevens, ED, Slawin, AMZ, Nolan, SP. 2010. [(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click chemistry. On the advantage of using well-defined catalytic systems. Dalton Transactions; 39: 7595-7606.
  • 14. Kaloğlu, N, Özdemir, İ, Günal, S, Özdemir, İ. 2017. Synthesis and antimicrobial activity of bulky 3,5‐di‐tert‐butyl substituent‐containing silver–N‐heterocyclic carbene complexes. Applied Organometallic Chemistry; 31: e3803.
  • 15. Kwok, SW, Fotsing, JR, Fraser, RJ, Rodionov, VO, Fokin, VV. 2010. Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Organic Letters; 12: 4217-4219.
  • 16. Alvarez, SG, Alvarez, MT. 1997. A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield. Synthesis; 4: 413–414.
  • 17. Shao, C, Wang, X, Xu, J, Zhao, J, Zhang, Q, Hu, Y. 2010. Carboxylic Acid-Promoted Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Journal of Organic Chemistry; 75: 7002-7005.
  • 18. Adzima, BJ, Tao, Y, Kloxin, CJ, DeFrorest, CA, Anseth, KS, Bowman, CN. 2011. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chemistry; 3: 256-259.
  • 19. Wang, D, Li, N, Zhao, M, Shi, W, Ma, C, Chen, B. 2010. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chemistry; 12: 2120-2123.
  • 20. Liu, B, Ma, X, Wu, F, Chen, W. 2015. Simple synthesis of neutral and cationic Cu-NHC complexes. Dalton Transactions, 44: 1836-1844.
Year 2019, Volume: 15 Issue: 1, 95 - 98, 22.03.2019
https://doi.org/10.18466/cbayarfbe.480872

Abstract

References

  • 1. Arduengo III, AJ, Dias, HVR, Calabrese, JC, Davidson, F. 1993. Homoleptic carbene-silver(I) and carbene-copper(I) complexes. Organometallics; 12: 3405-3409.
  • 2. Trose, M, Nahra, F, Poater, A, Cordes, DB, Slawin, AMZ, Cavallo, L, Cazin, CSJ. 2017. Investigating the structure and reactivity of azolyl-based copper(I)–NHC complexes: The role of the anionic ligand. ACS Catalysis; 7: 8176-8183.
  • 3. Delvos, LB, Oestreich, M. 2015. Temperature-dependent direct enantioconvergent silylation of a racemic cyclic allylic phosphate by copper(I) catalyzed allylic substitution. Synthesis-Stuttgart; 47: 924-933.
  • 4. Delp, SA, Munro-Leighton, C, Goj, LA, Ramirez, MA, Gunnoe, TB, Petersen, JL, Boyle, PD. 2007. Addition of S−H bonds across electron-deficient olefins catalyzed by well-defined copper(I) thiolate complexes. Inorganic Chemistry; 46: 2365-2367.
  • 5. Jang, H, Zhugralin, AR, Lee, Y, Hoveyda, AH. 2011. Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC–Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity. Journal of American Chemical Society; 133: 7859-7871.
  • 6. Wang, W, Zhang, G, Lang, R, Xia, C, Li, F. 2013. pH-responsive N-heterocyclic carbene copper(I) complexes: syntheses and recoverable applications in the carboxylation of arylboronic esters and benzoxazole with carbon dioxide. Green Chemistry; 15: 635-640.
  • 7. Lewis, WG, Green, LG, Radic, Z, Carlier, PR, Taylor, P, Finn, MG, Sharpless, KB. 2002. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angewandte Chemie International Edition; 41: 1053-1057.
  • 8. Whiting, M, Muldoon, J, Lin, Y-C, Silverman, SM, Lindstrom, W, Olson, AJ, Kolb, HC, Finn, MG, Sharpless, KB, Elder, JH. 2006. Inhibitors of HIV‐1 protease by using In situ Click chemistry. Angewandte Chemie International Edition; 45: 1435-1439.
  • 9. Demir Atlı, D. 2018. Synthesis and characterization of benzimidazolium salts bearing triazole groups. Celal Bayar University Journal of Science; 14: 57-60.
  • 10. Golas, PL, Tsarevsky, NV, Matyjaszewski, K. 2008. Structure-reactivity correlation in Click chemistry: Substituent effect on azide reactivity. Macromolecular Rapid Communications; 29: 1167-1171.
  • 11. Pasupuleti, BG, Bez, G. 2019. CuI/L-proline catalyzed click reaction in glycerol for the synthesis of 1,2,3-triazoles. Tetrahedron Letters; 60: 142-146.
  • 12. Nia, AS, Rana, S, Döhler, D, Jirsa, F, Meister, A, Guadagno, L, Koslowski, E, Bron, M, Binder, WH. 2015. Carbon‐supported copper nanomaterials: Recyclable catalysts for Huisgen [3+2] cycloaddition reactions. Chemistry-A European Journal; 21: 10763-10770.
  • 13. Diez-Gonzalez, S, Escudero-Adan, EC, Benet-Buchholz, J, Stevens, ED, Slawin, AMZ, Nolan, SP. 2010. [(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click chemistry. On the advantage of using well-defined catalytic systems. Dalton Transactions; 39: 7595-7606.
  • 14. Kaloğlu, N, Özdemir, İ, Günal, S, Özdemir, İ. 2017. Synthesis and antimicrobial activity of bulky 3,5‐di‐tert‐butyl substituent‐containing silver–N‐heterocyclic carbene complexes. Applied Organometallic Chemistry; 31: e3803.
  • 15. Kwok, SW, Fotsing, JR, Fraser, RJ, Rodionov, VO, Fokin, VV. 2010. Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Organic Letters; 12: 4217-4219.
  • 16. Alvarez, SG, Alvarez, MT. 1997. A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield. Synthesis; 4: 413–414.
  • 17. Shao, C, Wang, X, Xu, J, Zhao, J, Zhang, Q, Hu, Y. 2010. Carboxylic Acid-Promoted Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Journal of Organic Chemistry; 75: 7002-7005.
  • 18. Adzima, BJ, Tao, Y, Kloxin, CJ, DeFrorest, CA, Anseth, KS, Bowman, CN. 2011. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chemistry; 3: 256-259.
  • 19. Wang, D, Li, N, Zhao, M, Shi, W, Ma, C, Chen, B. 2010. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chemistry; 12: 2120-2123.
  • 20. Liu, B, Ma, X, Wu, F, Chen, W. 2015. Simple synthesis of neutral and cationic Cu-NHC complexes. Dalton Transactions, 44: 1836-1844.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Deniz Demir Atlı

Şebnem E. Sözerli This is me

Publication Date March 22, 2019
Published in Issue Year 2019 Volume: 15 Issue: 1

Cite

APA Demir Atlı, D., & Sözerli, Ş. E. (2019). Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(1), 95-98. https://doi.org/10.18466/cbayarfbe.480872
AMA Demir Atlı D, Sözerli ŞE. Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex. CBUJOS. March 2019;15(1):95-98. doi:10.18466/cbayarfbe.480872
Chicago Demir Atlı, Deniz, and Şebnem E. Sözerli. “Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, no. 1 (March 2019): 95-98. https://doi.org/10.18466/cbayarfbe.480872.
EndNote Demir Atlı D, Sözerli ŞE (March 1, 2019) Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 1 95–98.
IEEE D. Demir Atlı and Ş. E. Sözerli, “Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex”, CBUJOS, vol. 15, no. 1, pp. 95–98, 2019, doi: 10.18466/cbayarfbe.480872.
ISNAD Demir Atlı, Deniz - Sözerli, Şebnem E. “Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/1 (March 2019), 95-98. https://doi.org/10.18466/cbayarfbe.480872.
JAMA Demir Atlı D, Sözerli ŞE. Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex. CBUJOS. 2019;15:95–98.
MLA Demir Atlı, Deniz and Şebnem E. Sözerli. “Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 15, no. 1, 2019, pp. 95-98, doi:10.18466/cbayarfbe.480872.
Vancouver Demir Atlı D, Sözerli ŞE. Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex. CBUJOS. 2019;15(1):95-8.