Year 2020, Volume 16 , Issue 3, Pages 245 - 249 2020-09-29

Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles

Emine Yegan ERDEM [1]


Microfluidic reactors are advantageous for nanomaterial synthesis due to their capability to provide controlled reaction environment. In this work, a droplet based microfluidic reactor is designed for the synthesis of silica nanoparticles. The synthesis is carried out in a very controlled environment and a uniform size and shape distribution is achieved. The classical synthesis protocol for silica nanoparticles is modified to use nonpolar solvents in the reaction so that this platform can later be used for coating hydrophobic nanomaterials. Therefore, this study not only presents a new device but also a new synthesis method. The results are compared with conventional batch wise synthesis methods and the obtained nanoparticles showed better size distribution.
microreactor, microfluidics, droplet-based flow
  • 1. He, Q, Shi, J. 2010. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry; 21: 5845-5855.
  • 2. Zhao, CX, He, L, Qiao, SZ, Middelberg, APJ. 2011. Nanoparticle synthesis in microreactors. Chemical Engineering Science; 66(7): 1463-1479.
  • 3. Wu, KCW, Yamauchi, Y. 2012. Controlling physical features of mesoporoussilica nanoparticles (MSNs) for emergingapplications. Journal of Materials Chemistry; 22:1251-1256.
  • 4. Mebert, AM, Baglole, CJ, Desimone, MF, Maysinger, Dusica. 2017. Nanoengineered silica: properties, applications and toxicity. Food and Chemical Toxicology; 109(1): 753-770.
  • 5. Erdem, EY, Cheng, JC, Doyle, FM, Pisano, AP. 2014. Multitemperature zone, droplet-based microreactor for increased temperature control in nanoparticle synthesis. Small; 10(6): 1076-1080.
  • 6. Phillips, TW, Lignos, IG, Maceiczyk, RM, DeMello, AJ, DeMello, A. 2014. Nanocrystal synthesis in microfluidic reactors: where next?. Lab Chip.; 14(17): 3172-3180,
  • 7. Chang, CH, Paul, BK, Remcho, VT, Atre, S, Hutchison, JE. 2008. Synthesis and post-processing of nanomaterials using microreaction technology. Journal of Nanoparticle Research; 10: 965-980.
  • 8. Nightingale, AM, deMello, JC. 2012. Segmented flow reactors for nanocrystal synthesis. Advanced Materials; 25(13): 1813-1821.
  • 9. Khan, SA, Gunther, A, Schmidt, MA, Jensen, KF. 2004. Microfluidic synthesis of colloidal silica. Langmuir; 20(20): 8604-8611.
  • 10. Lee, I, Yoo, Y, Cheng, Z, Jeong, HK. 2008. Generation of monodisperse mesoporous silica microspheres with controllable size and surface morphology in a microfluidic device. Advanced Functional Materials, 18(24): 4014-4021.
  • 11. Carroll, NJ, Rathod, SB, Derbins, E, Mendez, S, Weitz, DA, Petsev, DN. 2008. Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir; 24(3): 658-661.
  • 12. Li, D, Guan, Z, Zhang, W, Zhou, X, Zhang, WY, Zhuang, Z, Wang, X, Yang, CJ. 2010. Synthesis of Uniform-Size Hollow Silica Microspheres through Interfacial Polymerization in Monodisperse Water-in-Oil Droplets. ACS Appl. Mater. Interfaces; 2(10): 2711-2714. 13. Su, M, Su, H, Du, B, Li, X, Ren, G, Wang, S. 2014. The properties of silica nanoparticles with high monodispersity synthesized in the microreactor system. Journal of Sol-Gel Science and Technology; 72(2): 375-384.
  • 14. Yan, H, Kim, C. 2014. Formation of monodisperse silica microparticles with various shapes and surface morphologies using double emulsion templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects; 443(20): 88-95.
  • 15. He, Y, Kim, KJ, Chang, CH. 2017. Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process. Nanotechnology; 28(23): 235602.
  • 16. Hao, N, Nie, Y. Xu, Z, Closson, AB, Usherwood, T, Zhang, JXJ. 2019. Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell. Chemical Engineering Journal; 366: 433–438.
  • 17. He, P, Greenway, G. Haswell, SJ. 2011. Microfluidic synthesis of silica nanoparticles using polyethylenimine polymers. Chemical Engineering Journal; 167(2): 694-699.
  • 18. Wacker, JB, Lignos, I, Parashar, VK, Gijs, MAM. 2012. Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplet. Lab Chip; 12: 3111-3116.
  • 19. Kobayashi, Y, Nozawa, T, Nakagawa, T, Gonda, K, Takeda, M, Ohuchi, N, Kasuya, A. 2010. Direct coating of quantum dots with silica shell. Journal of Sol-Gel Science and Technology; 55: 79-85.
  • 20. Popović, Z, Liu, W, Chauhan, VP, Lee, J, Wong, C, Greytak, AB, Insin, N, Nocera, DG, Fukumura, D, Jain, RK, Bawendi, MG. 2010. A nanoparticle size series for in vivo fluorescence imaging. Angewandte Chemie; 122(46): 8831-8834.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0001-9852-2293
Author: Emine Yegan ERDEM (Primary Author)
Institution: İHSAN DOĞRAMACI BİLKENT ÜNİVERSİTESİ
Country: Turkey


Supporting Institution TÜBİTAK
Project Number 114C092
Thanks E. Y. Erdem would like to acknowledge the Tübitak 2232 grant that founded this research. She also thanks Mr. Alican Özkan and Mr. Arsalan Nikdoost for their help in laboratory studies.
Dates

Acceptance Date : September 7, 2020
Publication Date : September 29, 2020

Bibtex @research article { cbayarfbe729586, journal = {Celal Bayar University Journal of Science}, issn = {1305-130X}, eissn = {1305-1385}, address = {}, publisher = {Celal Bayar University}, year = {2020}, volume = {16}, pages = {245 - 249}, doi = {10.18466/cbayarfbe.729586}, title = {Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles}, key = {cite}, author = {Erdem, Emine Yegan} }
APA Erdem, E . (2020). Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles . Celal Bayar University Journal of Science , 16 (3) , 245-249 . DOI: 10.18466/cbayarfbe.729586
MLA Erdem, E . "Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles" . Celal Bayar University Journal of Science 16 (2020 ): 245-249 <https://dergipark.org.tr/en/pub/cbayarfbe/issue/56964/729586>
Chicago Erdem, E . "Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles". Celal Bayar University Journal of Science 16 (2020 ): 245-249
RIS TY - JOUR T1 - Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles AU - Emine Yegan Erdem Y1 - 2020 PY - 2020 N1 - doi: 10.18466/cbayarfbe.729586 DO - 10.18466/cbayarfbe.729586 T2 - Celal Bayar University Journal of Science JF - Journal JO - JOR SP - 245 EP - 249 VL - 16 IS - 3 SN - 1305-130X-1305-1385 M3 - doi: 10.18466/cbayarfbe.729586 UR - https://doi.org/10.18466/cbayarfbe.729586 Y2 - 2020 ER -
EndNote %0 Celal Bayar Üniversitesi Fen Bilimleri Dergisi Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles %A Emine Yegan Erdem %T Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles %D 2020 %J Celal Bayar University Journal of Science %P 1305-130X-1305-1385 %V 16 %N 3 %R doi: 10.18466/cbayarfbe.729586 %U 10.18466/cbayarfbe.729586
ISNAD Erdem, Emine Yegan . "Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles". Celal Bayar University Journal of Science 16 / 3 (September 2020): 245-249 . https://doi.org/10.18466/cbayarfbe.729586
AMA Erdem E . Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles. Celal Bayar Univ J Sci. 2020; 16(3): 245-249.
Vancouver Erdem E . Droplet-based Microfluidic Device for the Synthesis of Silica Nanoparticles. Celal Bayar University Journal of Science. 2020; 16(3): 245-249.