Research Article
BibTex RIS Cite
Year 2020, Volume: 16 Issue: 4, 409 - 418, 30.12.2020

Abstract

References

  • 1. P.K. Jena, B. Mishra, K.S. Kumar, T.B. Bhat, An experimental study on the ballistic impact behavior of some metallic armour materials against 7.62 mm deformable projectile, Mater. Design. 31 (2010) 3308-3316. https://doi.org/10.1016/j.matdes.2010.02.005.
  • 2. V. Madhu, T.B. Bhat, Armour protection and affordable protection for futuristic combat vehicles, Def. Sci. J. 61(4) (2011) 394-402. doi: 10.14429/dsj.61.365.
  • 3. P. Sharma, P. Chandel, V. Bhardwaj, M. Singh, P. Mahajan, Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles, Thin Wall Struct. 126 (2018) 205-219. http://dx.doi.org/10.1016/j.tws.2017.05.014.
  • 4. K. Senthil, M.A. Iqbal, B. Arindam, R. Mittal, N.K. Gubta, Ballistic resistance of 2024 aluminium plates against hemispherical, sphere and blunt nose projectiles, Thin Wall Struct. 126 (2018) 94-105. https://doi.org/10.1016/j.tws.2017.02.028.
  • 5. C. Mapelli, A. Manes, M. Giglo, D. Mombelli, C. Baldizzone, A. Gruttadauria, Microstructural investigation on an Al 6061 T6 alloy subjected to ballistic impact, Procedia Eng. 10 (2011) 3447-3452. https://doi.org/10.1016/j.proeng.2011.04.568.
  • 6. J.K. Holmen, J. Johnsen, S. Jupp, O.S. Hopperstad, T. Borvik, Effects of heat treatment on the ballistic properties of AA6070 aluminium alloy, Int. J. Impact Eng. 54 (2013) 119-133. http://dx.doi.org/10.1016/j.ijimpeng.2013.02.002.
  • 7. T. Borvik, L. Olovsson, S. Dey, M. Langseth, Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates, Int. J. Impact Eng. 38 (2011) 577-589. https://doi.org/10.1016/j.ijimpeng.2011.02.001.
  • 8. P.K. Jena, K. Sivakumar, R.K. Mandal, A.K. Sing, Influence of heat treatment on the ballistic behavior of AA-7017 alloy plate against 7.62 deformable projectiles, Procedia Eng. 173 (2017) 214-221. https://doi.org/10.1016/j.proeng.2016.12.060
  • 9. M. Erdem, H. Cinici, U. Gokmen, H. Karakoc, M. Turker, Mechanical and ballistic properties of powder metal 7039 aluminium alloy joined by friction stir welding, Trans. Nonferrous Met. Soc. China. 26 (2016) 74−84. https://doi.org/10.1016/S1003-6326(16)64090-6.
  • 10. M.A. Khan, Y. Wang, H. Cheng, F. Nazeer, G. Yasin, M.U. Farooq, A. Malik, Z. Nazir. Ballistic behaviour of spray formed AA7055 aluminum alloy against tungsten core projectile impact, Vacuum. 159 (2019) 482-493. https://doi.org/10.1016/j.vacuum.2018.10.073.
  • 11. T. Demir, M. Übeyli, R.O. Yıldırım, Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile, Mater. Design. 29 (2008) 2009-2016. https://doi.org/10.1016/S1003-6326(16)64090-6.
  • 12. E.A., Flores-Johnson, M., Saleh, L., Edwards, Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile, Int. J. Impact Eng. 38 (2011) 1022-1032. https://doi.org/10.1016/j.ijimpeng.2011.08.005.
  • 13. A.P. Newbery, S.R. Nutt, E.J. Lavernia, Multi-scale Al 5083 for military vehicles with improved performance, JOM., 58 (2006) 56-61. https://doi.org/10.1007/s11837-006-0216-4.
  • 14. M.K. Forrestal, V.K. Luk, Perforation of aluminum armor plates with conical-nose projectiles. Mech. Mater. 10(1-2) (1990) 97-105. https://doi.org/10.1016/0167-6636(90)90020-G.
  • 15. T. Borvik, A.H., Clausen, O.S., Hopperstad, Langseth, M., Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles—experimental study, Int. J. Impact Eng. 30 (2004) 367-384. https://doi.org/10.1016/S0734-743X(03)00072-1.
  • 16. T. Borvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, Langseth, M., Perforation of 5083-H116 aluminum plates with conical-nose steel projectiles-calculations, Int. J. Impact Eng. 36 (2009) 426-437. https://doi.org/10.1016/j.ijimpeng.2008.02.004.
  • 17. T. Borvik, M.J. Forrestal, T.L. Warren, Perforation of 5083-H116 aluminum armor plates with ogive-nose rods and 7.62 mm APM2 bullets, Exp. Mech. 50 (2010) 969-978. https://doi.org/10.1007/s11340-009-9262-5.
  • 18. M.F. Abdullah, S. Abdullah, M.Z. Omar, Z. Sajuri, M. Sohaimi, Failure observation of the AZ31B magnesium alloy and the effect of lead addition content under ballistic impact, Adv. Mech. Eng. 7(5) (2015) 1-13. https://doi.org/10.1177/1687814015585428.
  • 19. B.E. Vendhal, K.L.H. Krishna, A.K. Lakshminarayanan, Numerical simulation on effect of impact velocity and target thickness in magnesium alloy AZ31B, Appl. Mech. Mater. 787 (2015) 291-295. https://doi.org/10.4028/www.scientific.net/AMM.787.291.
  • 20. T.L. Jones, R.D. DeLorme, M.S. Burkins, W.A. Gooch, Ballistic performance of magnesium alloy AZ31B. 23rd International symposium on ballistics. 989-995, 16-20 April 2007, Tarragona, Spain.
  • 21. J.S. Montgomery, M.G.H. Wells, B. Roopchand, J.W. Ogilvy, Low-cost titanium armors for combat vehicles, JOM. 49(5) (1997) 45-47. https://doi.org/10.1007/BF02914684.
  • 22. G. Sukumar, B.B. Singh, A. Bhattacharjee, K. Sivakumar, A.K. Gogia, Effect of heat treatment on mechanical properties and ballistic performance of Ti-4Al-2.3V-1.9Fe alloy, Mater. Today. 2 (2015) 1102-1108. https://doi.org/10.1016/j.matpr.2015.07.015.
  • 23. B.B. Singh, G. Sukumar, A. Bhattacharjee, K.S. Kumar, T.B. Bhar, A.K. Gogia, Effect of heat treatment on ballistic impact behavior of Ti–6Al–4V against 7.62 mm deformable projectile, Mater. Design. 36 (2012) 640-649. https://doi.org/10.1016/j.matdes.2011.11.030.
  • 24. B.N. Cox, H. Gao, D. Gross, D. Rittel, Modern topics and challenges in dynamic fracture, J. Mech. Phys. Solids. 53 (2005) 565-596. https://doi.org/10.1016/j.jmps.2004.09.002.
  • 25. L.S. Gallo, M.O.C.V. Boas, A.C.M. Rodrigues, F.C.L. Melo, E.D. Zanotto, Transparent glass–ceramics for ballistic protection: materials and challenges, J. Mater. Res. Technol. 8(3) (2019) 3357–3372. https://doi.org/10.1016/j.jmrt.2019.05.006.
  • 26. A.L. Florence, Interaction of projectiles and composite armour, part II. Standard Research Institute, Menlo Park, California, 1969.
  • 27. V.P. Alekseevskii, Penetration of a rod into a target at high velocity. Combust. Explo. Shock. 2(2) (1966) 63-66. https://doi.org/10.1007/BF00749237.
  • 28. Tate, A., A theory for the deceleration of long rods after impact, J. Mech. Phys. Solids. 15(6) (1967) 387–399. https://doi.org/10.1016/0022-5096(67)90010-5.
  • 29. R.L. Woodward, A simple one-dimensional approach to modelling ceramic composite armour defeat, Int. J. Impact Eng. 9(4) (1990) 455-474. https://doi.org/10.1016/0734-743X(90)90035-T.
  • 30. P.C. Den Reijer, Impact on ceramic faced armours. PhD thesis, Delft University of Technology, 1991.
  • 31. R. Zaera, V. Sanchez-Galvez, Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armours, Int. J. Impact Eng. 21(3) (1998) 133–148. https://doi.org/10.1016/S0734-743X(97)00035-3.
  • 32. I.S. Chocron Benloulo, V. Sanchez-Galvez, A new analytical model to simulate impact onto ceramic/composite armors, Int. J. Impact Eng. 21(6) (1998) 461–471. https://doi.org/10.1016/S0734-743X(98)00006-2.
  • 33. S. Feli, M.E.A Aaleagha, Z. Ahmadi, A new analytical model of normal penetration of projectiles into the light-weight ceramic–metal targets, Int. J. Impact Eng. 37(5) (2010) 561–567. https://doi.org/10.1016/j.ijimpeng.2009.10.006.
  • 34. B. Luo, W. Goh, Z. Chen, J. Yuan, Laterally pre-compressed SiC tiles against long rod impact, Def. Technol. 14(5) (2018) 585-589. https://doi.org/10.1016/j.dt.2018.07.007.
  • 35. I.G. Crouch, M. Kesharaju, R. Nagarajah, Characterisation, significance and detection of manufacturing defects in reaction sintered silicon carbide armour materials, Ceram. Int. 41(9) (2015) 11581-11591. https://doi.org/10.1016/j.ceramint.2015.06.083.
  • 36. E. Medvedovski, Ballistic performance of armour ceramics: Influence of design and structure. Part 2, Ceram. Int. 36 (2010) 2117-2127. https://doi.org/10.1016/j.ceramint.2010.05.022.
  • 37. M.R.I. Islam, J.Q. Zheng, R.C. Batra, Ballistic performance of ceramic and ceramic-metal composite plates with JH1, JH2 and JHB material models, Int. J. Impact Eng. 137 (2020) e103469. https://doi.org/10.1016/j.ijimpeng.2019.103469.
  • 38. J., Venkatesan, M.A. Iqbal, V. Madhu, Ballistic performance of bilayer alumina/aluminium and silicon carbide/aluminium armours, Procedia Eng. 173 (2017) 671-678. https://doi.org/10.1016/j.proeng.2016.12.141.
  • 39. G. R. Johnson, W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics,1983.
  • 40. M. Übeyli, R.O. Yildirim, B. Ögel, Investigation on the ballistic behavior of Al2O3/Al2024 laminated composites, J. Mater. Process. Technol. 196 (2008) 356-364. https://doi.org/10.1016/j.jmatprotec.2007.05.050.
  • 41. C.C. Holland, E.A. Gamble, F.W. Zok, V.S. Deshpande, R.M. McMeeking, Effect of design on the performance of steel-alumina bilayers and trilayers, Mech. Mater. 91(1) (2015) 241-251. https://doi.org/10.1016/j.mechmat.2015.05.002.
  • 42. B. Wang, G. Lu, On the optimisation of two-component plates against ballistic impact, J. Mater. Process. Technol. 57 (1996) 141-145. https://doi.org/10.1016/0924-0136(95)02050-0.
  • 43. T. Demir, M. Übeyli, R.O. Yildirim, M.S. Karakas, Response of Alumina/4340 Steel Laminated Composites against the Impact of 7.62 mm Armor Piercing Projectiles, Sci. Eng. Compos. Mater. 16(2) (2009) 89-98. https://doi.org/10.1515/SECM.2009.16.2.89.
  • 44. M.E. Backman, W. Goldsmith, The mechanics of penetration of projectiles into targets. Int. J. Eng. Sci. 16(1) (1978) 1-99. https://doi.org/10.1016/0020-7225(78)90002-2.
  • 45. G.H. Majzoobi, H. Morshedi, K. Farhadi, The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs, Thin-Walled Struct. 122 (2018) 1-7. https://doi.org/10.1016/j.tws.2017.10.006.
  • 46. M. Übeyli, H. Deniz, T. Demir, B. Ögel, B. Gürel, Ö. Keleş, Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers, Mater. Design. 32(3) (2011) 165-1570. https://doi.org/10.1016/j.matdes.2010.09.025.

Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2

Year 2020, Volume: 16 Issue: 4, 409 - 418, 30.12.2020

Abstract

Ceramic/metal laminated composite armor systems have great importance and potential in defense technology due to their high ballistic performance and lightweight. In this study, it was aimed to determine the ballistic performances, limits, and perforation types of light metals (with densities below 5.0 g/cm3) used as ductile backing plates in laminated composite armor systems. In the numerical analysis, SiC tiles of 5 and 10 mm thickness were used as the front layer. Al5083-H116, Mg AZ31B, and Ti6Al4V light metal alloys in different thicknesses were used as the backing layer. While using the Johnson and Holmquist (JH-1) material model in SiC ceramic tiles, the Johnson-Cook (JC) material model was applied for “.30 APM2” bullet components and metal layers. The analyzes were performed with Ansys/Autodyn software. As a result of the simulations, among all the laminated armor systems providing full protection against “.30 APM2” ballistic threats with a collision speed of 878 m/s, the lowest areal density was determined as 54.245 kg/m2 in 10 mm SiC/5 mm Ti6Al4V laminated composite armor.

References

  • 1. P.K. Jena, B. Mishra, K.S. Kumar, T.B. Bhat, An experimental study on the ballistic impact behavior of some metallic armour materials against 7.62 mm deformable projectile, Mater. Design. 31 (2010) 3308-3316. https://doi.org/10.1016/j.matdes.2010.02.005.
  • 2. V. Madhu, T.B. Bhat, Armour protection and affordable protection for futuristic combat vehicles, Def. Sci. J. 61(4) (2011) 394-402. doi: 10.14429/dsj.61.365.
  • 3. P. Sharma, P. Chandel, V. Bhardwaj, M. Singh, P. Mahajan, Ballistic impact response of high strength aluminium alloy 2014-T652 subjected to rigid and deformable projectiles, Thin Wall Struct. 126 (2018) 205-219. http://dx.doi.org/10.1016/j.tws.2017.05.014.
  • 4. K. Senthil, M.A. Iqbal, B. Arindam, R. Mittal, N.K. Gubta, Ballistic resistance of 2024 aluminium plates against hemispherical, sphere and blunt nose projectiles, Thin Wall Struct. 126 (2018) 94-105. https://doi.org/10.1016/j.tws.2017.02.028.
  • 5. C. Mapelli, A. Manes, M. Giglo, D. Mombelli, C. Baldizzone, A. Gruttadauria, Microstructural investigation on an Al 6061 T6 alloy subjected to ballistic impact, Procedia Eng. 10 (2011) 3447-3452. https://doi.org/10.1016/j.proeng.2011.04.568.
  • 6. J.K. Holmen, J. Johnsen, S. Jupp, O.S. Hopperstad, T. Borvik, Effects of heat treatment on the ballistic properties of AA6070 aluminium alloy, Int. J. Impact Eng. 54 (2013) 119-133. http://dx.doi.org/10.1016/j.ijimpeng.2013.02.002.
  • 7. T. Borvik, L. Olovsson, S. Dey, M. Langseth, Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates, Int. J. Impact Eng. 38 (2011) 577-589. https://doi.org/10.1016/j.ijimpeng.2011.02.001.
  • 8. P.K. Jena, K. Sivakumar, R.K. Mandal, A.K. Sing, Influence of heat treatment on the ballistic behavior of AA-7017 alloy plate against 7.62 deformable projectiles, Procedia Eng. 173 (2017) 214-221. https://doi.org/10.1016/j.proeng.2016.12.060
  • 9. M. Erdem, H. Cinici, U. Gokmen, H. Karakoc, M. Turker, Mechanical and ballistic properties of powder metal 7039 aluminium alloy joined by friction stir welding, Trans. Nonferrous Met. Soc. China. 26 (2016) 74−84. https://doi.org/10.1016/S1003-6326(16)64090-6.
  • 10. M.A. Khan, Y. Wang, H. Cheng, F. Nazeer, G. Yasin, M.U. Farooq, A. Malik, Z. Nazir. Ballistic behaviour of spray formed AA7055 aluminum alloy against tungsten core projectile impact, Vacuum. 159 (2019) 482-493. https://doi.org/10.1016/j.vacuum.2018.10.073.
  • 11. T. Demir, M. Übeyli, R.O. Yıldırım, Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile, Mater. Design. 29 (2008) 2009-2016. https://doi.org/10.1016/S1003-6326(16)64090-6.
  • 12. E.A., Flores-Johnson, M., Saleh, L., Edwards, Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile, Int. J. Impact Eng. 38 (2011) 1022-1032. https://doi.org/10.1016/j.ijimpeng.2011.08.005.
  • 13. A.P. Newbery, S.R. Nutt, E.J. Lavernia, Multi-scale Al 5083 for military vehicles with improved performance, JOM., 58 (2006) 56-61. https://doi.org/10.1007/s11837-006-0216-4.
  • 14. M.K. Forrestal, V.K. Luk, Perforation of aluminum armor plates with conical-nose projectiles. Mech. Mater. 10(1-2) (1990) 97-105. https://doi.org/10.1016/0167-6636(90)90020-G.
  • 15. T. Borvik, A.H., Clausen, O.S., Hopperstad, Langseth, M., Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles—experimental study, Int. J. Impact Eng. 30 (2004) 367-384. https://doi.org/10.1016/S0734-743X(03)00072-1.
  • 16. T. Borvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, Langseth, M., Perforation of 5083-H116 aluminum plates with conical-nose steel projectiles-calculations, Int. J. Impact Eng. 36 (2009) 426-437. https://doi.org/10.1016/j.ijimpeng.2008.02.004.
  • 17. T. Borvik, M.J. Forrestal, T.L. Warren, Perforation of 5083-H116 aluminum armor plates with ogive-nose rods and 7.62 mm APM2 bullets, Exp. Mech. 50 (2010) 969-978. https://doi.org/10.1007/s11340-009-9262-5.
  • 18. M.F. Abdullah, S. Abdullah, M.Z. Omar, Z. Sajuri, M. Sohaimi, Failure observation of the AZ31B magnesium alloy and the effect of lead addition content under ballistic impact, Adv. Mech. Eng. 7(5) (2015) 1-13. https://doi.org/10.1177/1687814015585428.
  • 19. B.E. Vendhal, K.L.H. Krishna, A.K. Lakshminarayanan, Numerical simulation on effect of impact velocity and target thickness in magnesium alloy AZ31B, Appl. Mech. Mater. 787 (2015) 291-295. https://doi.org/10.4028/www.scientific.net/AMM.787.291.
  • 20. T.L. Jones, R.D. DeLorme, M.S. Burkins, W.A. Gooch, Ballistic performance of magnesium alloy AZ31B. 23rd International symposium on ballistics. 989-995, 16-20 April 2007, Tarragona, Spain.
  • 21. J.S. Montgomery, M.G.H. Wells, B. Roopchand, J.W. Ogilvy, Low-cost titanium armors for combat vehicles, JOM. 49(5) (1997) 45-47. https://doi.org/10.1007/BF02914684.
  • 22. G. Sukumar, B.B. Singh, A. Bhattacharjee, K. Sivakumar, A.K. Gogia, Effect of heat treatment on mechanical properties and ballistic performance of Ti-4Al-2.3V-1.9Fe alloy, Mater. Today. 2 (2015) 1102-1108. https://doi.org/10.1016/j.matpr.2015.07.015.
  • 23. B.B. Singh, G. Sukumar, A. Bhattacharjee, K.S. Kumar, T.B. Bhar, A.K. Gogia, Effect of heat treatment on ballistic impact behavior of Ti–6Al–4V against 7.62 mm deformable projectile, Mater. Design. 36 (2012) 640-649. https://doi.org/10.1016/j.matdes.2011.11.030.
  • 24. B.N. Cox, H. Gao, D. Gross, D. Rittel, Modern topics and challenges in dynamic fracture, J. Mech. Phys. Solids. 53 (2005) 565-596. https://doi.org/10.1016/j.jmps.2004.09.002.
  • 25. L.S. Gallo, M.O.C.V. Boas, A.C.M. Rodrigues, F.C.L. Melo, E.D. Zanotto, Transparent glass–ceramics for ballistic protection: materials and challenges, J. Mater. Res. Technol. 8(3) (2019) 3357–3372. https://doi.org/10.1016/j.jmrt.2019.05.006.
  • 26. A.L. Florence, Interaction of projectiles and composite armour, part II. Standard Research Institute, Menlo Park, California, 1969.
  • 27. V.P. Alekseevskii, Penetration of a rod into a target at high velocity. Combust. Explo. Shock. 2(2) (1966) 63-66. https://doi.org/10.1007/BF00749237.
  • 28. Tate, A., A theory for the deceleration of long rods after impact, J. Mech. Phys. Solids. 15(6) (1967) 387–399. https://doi.org/10.1016/0022-5096(67)90010-5.
  • 29. R.L. Woodward, A simple one-dimensional approach to modelling ceramic composite armour defeat, Int. J. Impact Eng. 9(4) (1990) 455-474. https://doi.org/10.1016/0734-743X(90)90035-T.
  • 30. P.C. Den Reijer, Impact on ceramic faced armours. PhD thesis, Delft University of Technology, 1991.
  • 31. R. Zaera, V. Sanchez-Galvez, Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armours, Int. J. Impact Eng. 21(3) (1998) 133–148. https://doi.org/10.1016/S0734-743X(97)00035-3.
  • 32. I.S. Chocron Benloulo, V. Sanchez-Galvez, A new analytical model to simulate impact onto ceramic/composite armors, Int. J. Impact Eng. 21(6) (1998) 461–471. https://doi.org/10.1016/S0734-743X(98)00006-2.
  • 33. S. Feli, M.E.A Aaleagha, Z. Ahmadi, A new analytical model of normal penetration of projectiles into the light-weight ceramic–metal targets, Int. J. Impact Eng. 37(5) (2010) 561–567. https://doi.org/10.1016/j.ijimpeng.2009.10.006.
  • 34. B. Luo, W. Goh, Z. Chen, J. Yuan, Laterally pre-compressed SiC tiles against long rod impact, Def. Technol. 14(5) (2018) 585-589. https://doi.org/10.1016/j.dt.2018.07.007.
  • 35. I.G. Crouch, M. Kesharaju, R. Nagarajah, Characterisation, significance and detection of manufacturing defects in reaction sintered silicon carbide armour materials, Ceram. Int. 41(9) (2015) 11581-11591. https://doi.org/10.1016/j.ceramint.2015.06.083.
  • 36. E. Medvedovski, Ballistic performance of armour ceramics: Influence of design and structure. Part 2, Ceram. Int. 36 (2010) 2117-2127. https://doi.org/10.1016/j.ceramint.2010.05.022.
  • 37. M.R.I. Islam, J.Q. Zheng, R.C. Batra, Ballistic performance of ceramic and ceramic-metal composite plates with JH1, JH2 and JHB material models, Int. J. Impact Eng. 137 (2020) e103469. https://doi.org/10.1016/j.ijimpeng.2019.103469.
  • 38. J., Venkatesan, M.A. Iqbal, V. Madhu, Ballistic performance of bilayer alumina/aluminium and silicon carbide/aluminium armours, Procedia Eng. 173 (2017) 671-678. https://doi.org/10.1016/j.proeng.2016.12.141.
  • 39. G. R. Johnson, W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics,1983.
  • 40. M. Übeyli, R.O. Yildirim, B. Ögel, Investigation on the ballistic behavior of Al2O3/Al2024 laminated composites, J. Mater. Process. Technol. 196 (2008) 356-364. https://doi.org/10.1016/j.jmatprotec.2007.05.050.
  • 41. C.C. Holland, E.A. Gamble, F.W. Zok, V.S. Deshpande, R.M. McMeeking, Effect of design on the performance of steel-alumina bilayers and trilayers, Mech. Mater. 91(1) (2015) 241-251. https://doi.org/10.1016/j.mechmat.2015.05.002.
  • 42. B. Wang, G. Lu, On the optimisation of two-component plates against ballistic impact, J. Mater. Process. Technol. 57 (1996) 141-145. https://doi.org/10.1016/0924-0136(95)02050-0.
  • 43. T. Demir, M. Übeyli, R.O. Yildirim, M.S. Karakas, Response of Alumina/4340 Steel Laminated Composites against the Impact of 7.62 mm Armor Piercing Projectiles, Sci. Eng. Compos. Mater. 16(2) (2009) 89-98. https://doi.org/10.1515/SECM.2009.16.2.89.
  • 44. M.E. Backman, W. Goldsmith, The mechanics of penetration of projectiles into targets. Int. J. Eng. Sci. 16(1) (1978) 1-99. https://doi.org/10.1016/0020-7225(78)90002-2.
  • 45. G.H. Majzoobi, H. Morshedi, K. Farhadi, The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs, Thin-Walled Struct. 122 (2018) 1-7. https://doi.org/10.1016/j.tws.2017.10.006.
  • 46. M. Übeyli, H. Deniz, T. Demir, B. Ögel, B. Gürel, Ö. Keleş, Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers, Mater. Design. 32(3) (2011) 165-1570. https://doi.org/10.1016/j.matdes.2010.09.025.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Ayvaz 0000-0002-9671-8679

Saim Kural 0000-0003-1722-6252

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 16 Issue: 4

Cite

APA Ayvaz, M., & Kural, S. (2020). Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 16(4), 409-418.
AMA Ayvaz M, Kural S. Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2. CBUJOS. December 2020;16(4):409-418.
Chicago Ayvaz, Mehmet, and Saim Kural. “Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor Against .30 APM2”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16, no. 4 (December 2020): 409-18.
EndNote Ayvaz M, Kural S (December 1, 2020) Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16 4 409–418.
IEEE M. Ayvaz and S. Kural, “Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2”, CBUJOS, vol. 16, no. 4, pp. 409–418, 2020.
ISNAD Ayvaz, Mehmet - Kural, Saim. “Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor Against .30 APM2”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 16/4 (December 2020), 409-418.
JAMA Ayvaz M, Kural S. Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2. CBUJOS. 2020;16:409–418.
MLA Ayvaz, Mehmet and Saim Kural. “Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor Against .30 APM2”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 16, no. 4, 2020, pp. 409-18.
Vancouver Ayvaz M, Kural S. Numerical Simulation on Balistic Performance of SiC/Light Metal Laminated Composite Armor against .30 APM2. CBUJOS. 2020;16(4):409-18.