Research Article
BibTex RIS Cite
Year 2021, Volume: 17 Issue: 2, 209 - 213, 28.06.2021
https://doi.org/10.18466/cbayarfbe.693942

Abstract

References

  • Massey, J. 1972. Optimum frame synchronization. IEEE transactions on communications; 20(2): 115–119.
  • Scholtz, R. 1980. Frame synchronization techniques. IEEE transactions on communications; 28(8): 1204–1213.
  • Ibnkahla, M. 2000. Applications of neural networks to digital communications–a survey. Signal processing; 80(7): 1185–1215.
  • Qin Z, Ye H, Li G, Juang F. 1972. Deep learning in physical layer communications. ArXiv: 1807.11713
  • Simeone, O. 2018. A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking; 4(4): 648–664.
  • Wang T, Wen CK, Wang H, Gao F, Jiang T. 2017. Deep learning for wireless physical layer: Opportunities and challenges. China Communications; 14(11): 92–111.
  • Dörner S, Cammerer S, Hoydis J, Brink S. 2017. Deep learning based communication over the air. IEEE Journal of Selected Topics in Signal Processing; 12(1): 132–143.
  • O’Shea T, Hoydis J. 2017. An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking; 3(4): 563–575.
  • O’Shea T J, Karra K, Clancy T C. 2016. Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention. arXiv: 1608.06409.
  • TO’Shea T J, Roy T, West N, Hilburn B C. 2018. Physical Layer Communications System Design Over-the-Air Using Adversarial Networks. ArXiv: 1803.03145.
  • O’Shea T J, Hoydis J. 2017. An introduction to machine learning communications systems. ArXiv: 1702.
  • O’Shea T J, Erpek T, Clancy T.C. 2017. Deep learning based MIMO communications. arXiv:1707.07980.
  • TO’Shea T J, Roy T, West N, Hilburn B C. 2018. Physical Layer Communications System Design Over-the-Air Using Adversarial Networks. ArXiv: 1803.03145.
  • O’Shea T J, Hoydis J. 2017. An introduction to machine learning communications systems. ArXiv: 1702.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature; 521(7553): 4362
  • Schmidl T M, Cox D C. 1997. Robust frequency and timing synchronization for OFDM. IEEE transactions on communications; 45(12): 1613–1621.

Frame Detection with Deep Learning

Year 2021, Volume: 17 Issue: 2, 209 - 213, 28.06.2021
https://doi.org/10.18466/cbayarfbe.693942

Abstract

Deep learning has become a way of solution for the realization of complex computations. As electronic communication starts to use more complex channels, the systems need to handle tough computations. For this reason, research on the use of deep learning in communication has increased recently. These researches aim to realize many applications used in communication with deep learning. Frame detection is one of the first things a receiver must handle and it may require a lot of hard computations. Deep learning-based frame detection can be an alternative approach. This study aims to build models that perform frame detection with deep learning. The proposed models provide the performance of correlation-based frame receivers commonly used for frame detection. The mean square root error of the prediction deviation is used as an evaluation metric to compare the proposed model to classic systems.

References

  • Massey, J. 1972. Optimum frame synchronization. IEEE transactions on communications; 20(2): 115–119.
  • Scholtz, R. 1980. Frame synchronization techniques. IEEE transactions on communications; 28(8): 1204–1213.
  • Ibnkahla, M. 2000. Applications of neural networks to digital communications–a survey. Signal processing; 80(7): 1185–1215.
  • Qin Z, Ye H, Li G, Juang F. 1972. Deep learning in physical layer communications. ArXiv: 1807.11713
  • Simeone, O. 2018. A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking; 4(4): 648–664.
  • Wang T, Wen CK, Wang H, Gao F, Jiang T. 2017. Deep learning for wireless physical layer: Opportunities and challenges. China Communications; 14(11): 92–111.
  • Dörner S, Cammerer S, Hoydis J, Brink S. 2017. Deep learning based communication over the air. IEEE Journal of Selected Topics in Signal Processing; 12(1): 132–143.
  • O’Shea T, Hoydis J. 2017. An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking; 3(4): 563–575.
  • O’Shea T J, Karra K, Clancy T C. 2016. Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention. arXiv: 1608.06409.
  • TO’Shea T J, Roy T, West N, Hilburn B C. 2018. Physical Layer Communications System Design Over-the-Air Using Adversarial Networks. ArXiv: 1803.03145.
  • O’Shea T J, Hoydis J. 2017. An introduction to machine learning communications systems. ArXiv: 1702.
  • O’Shea T J, Erpek T, Clancy T.C. 2017. Deep learning based MIMO communications. arXiv:1707.07980.
  • TO’Shea T J, Roy T, West N, Hilburn B C. 2018. Physical Layer Communications System Design Over-the-Air Using Adversarial Networks. ArXiv: 1803.03145.
  • O’Shea T J, Hoydis J. 2017. An introduction to machine learning communications systems. ArXiv: 1702.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature; 521(7553): 4362
  • Schmidl T M, Cox D C. 1997. Robust frequency and timing synchronization for OFDM. IEEE transactions on communications; 45(12): 1613–1621.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mete Yıldırım

Radosveta İvanova Sokullu

Publication Date June 28, 2021
Published in Issue Year 2021 Volume: 17 Issue: 2

Cite

APA Yıldırım, M., & Sokullu, R. İ. (2021). Frame Detection with Deep Learning. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(2), 209-213. https://doi.org/10.18466/cbayarfbe.693942
AMA Yıldırım M, Sokullu Rİ. Frame Detection with Deep Learning. CBUJOS. June 2021;17(2):209-213. doi:10.18466/cbayarfbe.693942
Chicago Yıldırım, Mete, and Radosveta İvanova Sokullu. “Frame Detection With Deep Learning”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, no. 2 (June 2021): 209-13. https://doi.org/10.18466/cbayarfbe.693942.
EndNote Yıldırım M, Sokullu Rİ (June 1, 2021) Frame Detection with Deep Learning. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 2 209–213.
IEEE M. Yıldırım and R. İ. Sokullu, “Frame Detection with Deep Learning”, CBUJOS, vol. 17, no. 2, pp. 209–213, 2021, doi: 10.18466/cbayarfbe.693942.
ISNAD Yıldırım, Mete - Sokullu, Radosveta İvanova. “Frame Detection With Deep Learning”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/2 (June 2021), 209-213. https://doi.org/10.18466/cbayarfbe.693942.
JAMA Yıldırım M, Sokullu Rİ. Frame Detection with Deep Learning. CBUJOS. 2021;17:209–213.
MLA Yıldırım, Mete and Radosveta İvanova Sokullu. “Frame Detection With Deep Learning”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 17, no. 2, 2021, pp. 209-13, doi:10.18466/cbayarfbe.693942.
Vancouver Yıldırım M, Sokullu Rİ. Frame Detection with Deep Learning. CBUJOS. 2021;17(2):209-13.