Research Article
BibTex RIS Cite
Year 2021, Volume: 17 Issue: 2, 129 - 136, 28.06.2021
https://doi.org/10.18466/cbayarfbe.865261

Abstract

References

  • References 1. Hüseyin Yapıcı,Bilge Albayrak,Numerical solutions of conjugate heat transfer and thermal stresses in a circular pipe externally heated with non-uniform heat flux, Energy Conversion and Management, Volume 45, Issue 6, April 2004, Pages 927-937
  • 2. Robert W. Hornbeck , Laminar flow in the entrance region of a pipe, Applied Scientific Research, Section A volume 13, pages224–232(1964)
  • 3. Bird R.B., Stewart W.E. and Lightfoot E.M. (1960). Transport phenomena, John Wiley, New York.
  • 4. Hansen, A.G. and Na, T.Y. (1968). Similarity solution of laminar, Incompressible boundary layer equations of non-Newtonian fluid, ASME Journal of basic engg.67, 71-74.
  • 5. Kapur, J. N., Bhatt, B.S. and Sacheti N.C. (1982). Non– Newtonian fluid flows, Pragati Prakashan, Meerut (India).
  • 6. Lee, S.Y. and Ames, W.F. (1966). Similar solutions for non-Newtonian fluids, AIChE J. 12, 700-708
  • 7. Timol, M.G. and Patel Manisha. (2004). On the class of similarity solutions for three dimensional boundary layer flows of non-Newtonian fluids, J. of Veer Narmad South Gujarat University, II-B, 103-109.
  • 8. Wells, C.S. (1964). Unsteady boundary layer flow of a non-Newtonian fluid on a flat plate, AIAA Journal, vol.2 (5), 951-952.
  • 9. Bizzell, G.D., and Slattery, J.C. (1962). Non-Newtonian boundary-layer flow, chemical Engineering Science, vol. 17, no. 10, pp. 777–782.
  • 10. Djukic, Dj.S. (1974). Hiemenz magnetic flow of power-law fluid, Journal of applied mechanics, Transaction of the ASME, 822-823.
  • 11. Djukic, Dj.S. (1973). On the use of Crocco’s equation for the flow of power-law fluids in a transverse magnetic field, AIChE Journal, vol 19, pp 1159-1163.
  • 12. Na, T.Y., and Hansen, A. (1967). Radial flow of viscous non-newtonian fluids between disks, Int. J. Non-Linear Mech. Vol. 2 pp. 261-273
  • 13. Patel, M and Timol, M G. (2011). Orthogonal Stagnation Point Flow Of A Power-Law Fluid Toward A Stretching Surface, International Journal of Applied Mechanics and Mathematics (IJAMM), 7(3), 31-37.
  • 14. Patel, M., Patel, R. and Timol, M.G. (2012). Group Invariance for non-Linear PDE’s : 3-D MHD stagnation point flow of non-Newtonian power-law fluids, International Journal of Mathematics and Scientific Computing (IJMSC), vol 2, no. 2, 72-80.
  • 15. Patel, M. and Timol, M.G. (2014). Numerical treatment of MHD Power-law fluid flow using the method of satisfaction of asymptotic boundary conditions (MSABC), International Journal of Applied Mechanics and Mathematics ,10 (8): 61-77
  • 16. Gupta, R. C. ”On developing laminar non-Newtonian flow in pipes and channels” Nonlinear Analysis: Real World Applications 2 (2001) 171 -193
  • 17. Alexandrou, A. N., McGilvreay ,T. M. and Burgos, G. “Steady Herschel–Bulkley fluid flow in three-dimensional expansions” J. Non-Newtonian Fluid Mech. 100 (2001) 77–96
  • 18. Gupta, R. C.” On developing laminar non-Newtonian flow in pipes and channels” Nonlinear Analysis: Real World Applications 2 (2001) 171 – 193

CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle

Year 2021, Volume: 17 Issue: 2, 129 - 136, 28.06.2021
https://doi.org/10.18466/cbayarfbe.865261

Abstract

Pipe flow problems are important in transportation of wastewater, oil lines and supply of water. In this study, a non-Newtonian fluid model is discussed and a numerical CFD solution is presented for flow geometry. The effects on velocity, pressure, dynamic viscosity and cell Reynolds number are discussed for different parameters of flow inside the pipe. Power Law function is considered in the analyses.

References

  • References 1. Hüseyin Yapıcı,Bilge Albayrak,Numerical solutions of conjugate heat transfer and thermal stresses in a circular pipe externally heated with non-uniform heat flux, Energy Conversion and Management, Volume 45, Issue 6, April 2004, Pages 927-937
  • 2. Robert W. Hornbeck , Laminar flow in the entrance region of a pipe, Applied Scientific Research, Section A volume 13, pages224–232(1964)
  • 3. Bird R.B., Stewart W.E. and Lightfoot E.M. (1960). Transport phenomena, John Wiley, New York.
  • 4. Hansen, A.G. and Na, T.Y. (1968). Similarity solution of laminar, Incompressible boundary layer equations of non-Newtonian fluid, ASME Journal of basic engg.67, 71-74.
  • 5. Kapur, J. N., Bhatt, B.S. and Sacheti N.C. (1982). Non– Newtonian fluid flows, Pragati Prakashan, Meerut (India).
  • 6. Lee, S.Y. and Ames, W.F. (1966). Similar solutions for non-Newtonian fluids, AIChE J. 12, 700-708
  • 7. Timol, M.G. and Patel Manisha. (2004). On the class of similarity solutions for three dimensional boundary layer flows of non-Newtonian fluids, J. of Veer Narmad South Gujarat University, II-B, 103-109.
  • 8. Wells, C.S. (1964). Unsteady boundary layer flow of a non-Newtonian fluid on a flat plate, AIAA Journal, vol.2 (5), 951-952.
  • 9. Bizzell, G.D., and Slattery, J.C. (1962). Non-Newtonian boundary-layer flow, chemical Engineering Science, vol. 17, no. 10, pp. 777–782.
  • 10. Djukic, Dj.S. (1974). Hiemenz magnetic flow of power-law fluid, Journal of applied mechanics, Transaction of the ASME, 822-823.
  • 11. Djukic, Dj.S. (1973). On the use of Crocco’s equation for the flow of power-law fluids in a transverse magnetic field, AIChE Journal, vol 19, pp 1159-1163.
  • 12. Na, T.Y., and Hansen, A. (1967). Radial flow of viscous non-newtonian fluids between disks, Int. J. Non-Linear Mech. Vol. 2 pp. 261-273
  • 13. Patel, M and Timol, M G. (2011). Orthogonal Stagnation Point Flow Of A Power-Law Fluid Toward A Stretching Surface, International Journal of Applied Mechanics and Mathematics (IJAMM), 7(3), 31-37.
  • 14. Patel, M., Patel, R. and Timol, M.G. (2012). Group Invariance for non-Linear PDE’s : 3-D MHD stagnation point flow of non-Newtonian power-law fluids, International Journal of Mathematics and Scientific Computing (IJMSC), vol 2, no. 2, 72-80.
  • 15. Patel, M. and Timol, M.G. (2014). Numerical treatment of MHD Power-law fluid flow using the method of satisfaction of asymptotic boundary conditions (MSABC), International Journal of Applied Mechanics and Mathematics ,10 (8): 61-77
  • 16. Gupta, R. C. ”On developing laminar non-Newtonian flow in pipes and channels” Nonlinear Analysis: Real World Applications 2 (2001) 171 -193
  • 17. Alexandrou, A. N., McGilvreay ,T. M. and Burgos, G. “Steady Herschel–Bulkley fluid flow in three-dimensional expansions” J. Non-Newtonian Fluid Mech. 100 (2001) 77–96
  • 18. Gupta, R. C.” On developing laminar non-Newtonian flow in pipes and channels” Nonlinear Analysis: Real World Applications 2 (2001) 171 – 193
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

M.murat Yavuz 0000-0002-5892-0075

Pınar Çavdar 0000-0002-1989-4759

Publication Date June 28, 2021
Published in Issue Year 2021 Volume: 17 Issue: 2

Cite

APA Yavuz, M., & Çavdar, P. (2021). CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 17(2), 129-136. https://doi.org/10.18466/cbayarfbe.865261
AMA Yavuz M, Çavdar P. CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle. CBUJOS. June 2021;17(2):129-136. doi:10.18466/cbayarfbe.865261
Chicago Yavuz, M.murat, and Pınar Çavdar. “CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17, no. 2 (June 2021): 129-36. https://doi.org/10.18466/cbayarfbe.865261.
EndNote Yavuz M, Çavdar P (June 1, 2021) CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17 2 129–136.
IEEE M. Yavuz and P. Çavdar, “CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle”, CBUJOS, vol. 17, no. 2, pp. 129–136, 2021, doi: 10.18466/cbayarfbe.865261.
ISNAD Yavuz, M.murat - Çavdar, Pınar. “CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 17/2 (June 2021), 129-136. https://doi.org/10.18466/cbayarfbe.865261.
JAMA Yavuz M, Çavdar P. CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle. CBUJOS. 2021;17:129–136.
MLA Yavuz, M.murat and Pınar Çavdar. “CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 17, no. 2, 2021, pp. 129-36, doi:10.18466/cbayarfbe.865261.
Vancouver Yavuz M, Çavdar P. CFD Modelling of Non-Newtonian Fluid Flow in a Pipe Including Obstacle. CBUJOS. 2021;17(2):129-36.