Validation and Verification of Cavitation in Microchannels by using an Open Source Computational Tool
Year 2021,
Volume: 17 Issue: 3, 223 - 227, 27.09.2021
Gökçe Özkazanç
Levent Ünlüsoy
,
Emine Yegan Erdem
Abstract
Cavitation is mostly unwanted in applications due to its unpredictable and distorting effect on fluid flow. On the other hand, its modelling is expensive in terms of time and computational power in general. Regarding this a tendency for using an open source software such as OpenFOAM is emerging as a promising tool for both predicting and analyzing cavity formation. With this tool, an effective reduction in license expenses is obtained. In this study, validation and verification of an OpenFOAM solver is investigated for cavitation in microchannels. Experiments are carried out as well for comparison with computational results. During the experiments, fluorescent particles were introduced in the flow and cavity formation was observed under a fluorescent camera. Therefore, motion of the cavity was also efficiently captured. Overall, computational and experimental results are compared and contrasted to investigate the capability of OpenFoam for the chosen conditions.
Supporting Institution
Savunma Sanayi Bakanlığı Savunma Sanayi için Araştırmacı Yetiştirme Programı (SAYP)
Thanks
We acknowledge the support from the Turkish Ministry of Defense for supporting the collaboration between Bilkent University and Roketsan Industry.
References
- 1. Brennen, C. E. Cavitation and bubble dynamics: Cambridge University Press, 2014; pp. 6.
- 2. Tamaki, N., Shimizu, M. Nishida, K. Hiroyasu, H. 1998. Effects of cavitation and internal flow on atomization of a liquid jet. Atomization and Sprays; 8 (2): 247-254.
- 3. Arndt, R. E. Cavitation in fluid machinery and hydraulic structures. 1981. Annual Review of Fluid Mechanics; 13(1): 273-326.
- 4. Aoyama, T., Suzuki, S., Kawamoto, A., Noda, T., Ozasa, T., Kato, T., Ito, T. 2007. Preventive design and analysis of cavitation noise on diesel engine. R&D Review of Toyota CRDL; 40(1): 36-42.
- 5. Chiu, D. T. 2007. Cellular manipulations in microvortices. Analytical and Bioanalytical Chemistry; 387: 17-20.
- 6. Lee, M. G., Choi, S., Park, J.-K. 2010. Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel. Biomedical Microdevices; 12: 1019–1026.
- 7. Kim, Y. T., Chung, B. L., Ma, M., Mulder, W. J. M., Fayad, Z. A., Farokhzad, O. C., Langer, R. 2012. Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices. Nano Letters; 12(7): 3587-3591.
- 8. Shen, F., Xu, M., Wang, Z., Liu, Z. M. 2017. Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics. Applied Physics Express; 10(9): 097301.
- 9. Shen, F., Xue, S., Zhou, B., Xu, M., Xiao, P., Liu, Z. 2018. Evolution of single-particle recirculating orbits within a hydrodynamic microvortex. J. Micromech. Microeng.; vol. 28(8): 085018.
- 10. Ayela, F., Cherief, W., Colombet, D., Ledoux, G., Martini, M., Mossaz, S., Podbevsek, D., Qiu, X., Tillement, O. 2017. Hydrodynamic cavitation through “labs on a chip”: from fundamentals to applications. Oil Gas Sci. Technol.; 72(19): 1-12.
- 11. Ghorbani, M., Chen, H., Villanueva, L. G., Grishenkov, D., Koşar, A. 2018. Intensifying cavitating flows in microfluidic devices with poly(vinyl alcohol) (PVA) microbubbles. Physics of Fluids, 30: 102001.
- 12. Rooze, J., Andre ́, M., van der Gulik, G.-J. S., Fernandez-Rivas, D., Gardeniers, G. E., Rebrov, E. V., Schouten, J. C., Keurentjes, J. T. F. 2012. Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers. Microfluid. Nanofluid.; 12: 499-508.
- 13. Egerer, C. P., Hickel, S., Schmidt, S. J., Adams, N. A. 2014. Large-eddy simulation of turbulent cavitating flow in a micro channel. Phys. of Fluids; 26(8): 085102.
- 14. Ghorbani, M., Yildiz, M., Gozuacik, D., Kosar, A. 2016. Cavitating nozzle flows in micro- and minichannels under the effect of turbulence. Journal of Mechanical Science and Technology; 30(6): 2565-2581.
- 15. Osterman, N., Derganc, J., Svenšek, D. 2016. Formation of vortices in long microcavities at low Reynolds number. Microfluid Nanofluid; 20(33): 1-10.
- 16. Cazzoli, G. Falfari, S., Bianchi, G. M., Forte, C., Catellani, C. 2016. Assessment of the cavitation models implemented in openfoam® under di-like conditions. Energy Procedia; 101: 638-645.
- 17. Asnaghi, A., Feymark, A. Bensow, R. E. Numerical simulation of cavitating flows using openfoam, proceedings of the 18th Numerical Towing Tank Symposium, Cortona, Italy, 2015.
- 18. Weller, H. G., Tabor, G., Jasak, H., Fureby, C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics; 12 (6): 620-631.
- 19. Medrano, M., Zermatten, P., Pellone, C., Franc, J.-P., Ayela, F. 2011. Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids. Physics of Fluids, 23(12): 127103.
- 20. Medrano, M., Pellone, C., Zermatten, P., Ayela, F. 2012. Hydrodynamic cavitation in microsystems. II. Simulations and optical observations. Physics of Fluids; 24(4): 047101.
Year 2021,
Volume: 17 Issue: 3, 223 - 227, 27.09.2021
Gökçe Özkazanç
Levent Ünlüsoy
,
Emine Yegan Erdem
References
- 1. Brennen, C. E. Cavitation and bubble dynamics: Cambridge University Press, 2014; pp. 6.
- 2. Tamaki, N., Shimizu, M. Nishida, K. Hiroyasu, H. 1998. Effects of cavitation and internal flow on atomization of a liquid jet. Atomization and Sprays; 8 (2): 247-254.
- 3. Arndt, R. E. Cavitation in fluid machinery and hydraulic structures. 1981. Annual Review of Fluid Mechanics; 13(1): 273-326.
- 4. Aoyama, T., Suzuki, S., Kawamoto, A., Noda, T., Ozasa, T., Kato, T., Ito, T. 2007. Preventive design and analysis of cavitation noise on diesel engine. R&D Review of Toyota CRDL; 40(1): 36-42.
- 5. Chiu, D. T. 2007. Cellular manipulations in microvortices. Analytical and Bioanalytical Chemistry; 387: 17-20.
- 6. Lee, M. G., Choi, S., Park, J.-K. 2010. Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel. Biomedical Microdevices; 12: 1019–1026.
- 7. Kim, Y. T., Chung, B. L., Ma, M., Mulder, W. J. M., Fayad, Z. A., Farokhzad, O. C., Langer, R. 2012. Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices. Nano Letters; 12(7): 3587-3591.
- 8. Shen, F., Xu, M., Wang, Z., Liu, Z. M. 2017. Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics. Applied Physics Express; 10(9): 097301.
- 9. Shen, F., Xue, S., Zhou, B., Xu, M., Xiao, P., Liu, Z. 2018. Evolution of single-particle recirculating orbits within a hydrodynamic microvortex. J. Micromech. Microeng.; vol. 28(8): 085018.
- 10. Ayela, F., Cherief, W., Colombet, D., Ledoux, G., Martini, M., Mossaz, S., Podbevsek, D., Qiu, X., Tillement, O. 2017. Hydrodynamic cavitation through “labs on a chip”: from fundamentals to applications. Oil Gas Sci. Technol.; 72(19): 1-12.
- 11. Ghorbani, M., Chen, H., Villanueva, L. G., Grishenkov, D., Koşar, A. 2018. Intensifying cavitating flows in microfluidic devices with poly(vinyl alcohol) (PVA) microbubbles. Physics of Fluids, 30: 102001.
- 12. Rooze, J., Andre ́, M., van der Gulik, G.-J. S., Fernandez-Rivas, D., Gardeniers, G. E., Rebrov, E. V., Schouten, J. C., Keurentjes, J. T. F. 2012. Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers. Microfluid. Nanofluid.; 12: 499-508.
- 13. Egerer, C. P., Hickel, S., Schmidt, S. J., Adams, N. A. 2014. Large-eddy simulation of turbulent cavitating flow in a micro channel. Phys. of Fluids; 26(8): 085102.
- 14. Ghorbani, M., Yildiz, M., Gozuacik, D., Kosar, A. 2016. Cavitating nozzle flows in micro- and minichannels under the effect of turbulence. Journal of Mechanical Science and Technology; 30(6): 2565-2581.
- 15. Osterman, N., Derganc, J., Svenšek, D. 2016. Formation of vortices in long microcavities at low Reynolds number. Microfluid Nanofluid; 20(33): 1-10.
- 16. Cazzoli, G. Falfari, S., Bianchi, G. M., Forte, C., Catellani, C. 2016. Assessment of the cavitation models implemented in openfoam® under di-like conditions. Energy Procedia; 101: 638-645.
- 17. Asnaghi, A., Feymark, A. Bensow, R. E. Numerical simulation of cavitating flows using openfoam, proceedings of the 18th Numerical Towing Tank Symposium, Cortona, Italy, 2015.
- 18. Weller, H. G., Tabor, G., Jasak, H., Fureby, C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics; 12 (6): 620-631.
- 19. Medrano, M., Zermatten, P., Pellone, C., Franc, J.-P., Ayela, F. 2011. Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids. Physics of Fluids, 23(12): 127103.
- 20. Medrano, M., Pellone, C., Zermatten, P., Ayela, F. 2012. Hydrodynamic cavitation in microsystems. II. Simulations and optical observations. Physics of Fluids; 24(4): 047101.