Research Article
BibTex RIS Cite

The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures

Year 2022, Volume: 18 Issue: 2, 119 - 127, 30.06.2021
https://doi.org/10.18466/cbayarfbe.1009553

Abstract

Understanding of plastic deformation mechanisms and/or microstructural changes of metals and alloys at elevated temperatures makes possible to control their hot working behavior and final mechanical properties. The aim of the present work is to optimize the conditions to achieve maximum ductility in terms of initial grain size, process temperature and deformation rate. In this study, the OFHC (oxygen-free high conductivity) copper samples of different initial grain sizes (25, 50, 100 and 150 μm) were subjected to tensile tests at temperatures 300, 405, 500 and 700 °C (0.42 - 0.75 Tm) and cross-head speeds of 1, 2, 5, 10, 20 and 50 mm/min (strain rates of 5.6x10-4 - 2.8x10-2 s-1). Experimental results indicated that particular conditions (initial grain size of 50 µm; 700 °C of working temperature and 5.6x10-3 s-1 of strain rate) should be provided in terms of process temperature and deformation rate depending upon initial grain size for dynamic recrystallization and also maximum ductility.

References

  • Karbasian, H, Tekkaya, AE. 2010. A review on hot stamping. Journal of Materials Processing Technology; 210: 2103-2118.
  • Huang, F, Chen, Q, Ding, H, Wang, Y, Mou X, Chen, J. 2021. Automotive steel with a high product of strength and elongation used for cold and hot forming simultaneously. Materials; 14: 1121.
  • Jeswiet, J, Geiger, M, Engel, U, Kleiner, M, Schikorra, M, Duflou, J, Neugebauer, R, Bariani, P, Bruschi, S. 2008. Metal forming progress since 2000. CIRP Journal of Manufacturing Science and Technology; 1: 2-17.
  • Hu, P., Ma, N., Liu, Lz., Zhu, YG. Hot forming process. Theories, methods and numerical technology of sheet metal cold and hot forming. springer series in advanced manufacturing. Springer, London, U.K., 2013.
  • Kumar, F.B., Sharma, A., Oraon, M. Future research potentials of hot rolling process: a review. In: Chattopadhyay, J., Singh, R., Prakash, O. (eds) Innovation in Materials Science and Engineering. Springer, Singapore, 2019.
  • Bhoyar, V, Umredkar, S. 2020. Manufacturing processes part II: a brief review on rolling & extrusion, International Journal of Innovations in Engineering and Science, 5: 33-37.
  • Blum, W, Li, YJ, Durst, K. 2009. Stability of ultrafine-grained Cu to subgrain coarsening and recrystallization in annealing and deformation at elevated temperatures. Acta Materialia; 57: 5207-5217.
  • Li, X, Xia, W, Yan, H, Chen, J, Su, B, Song, M, Li, Z, Lu, Y. 2020. High strength and large ductility of a fine-grained Al–Mg alloy processed by high strain rate hot rolling and cold Rolling. Materials Science and Engineering A; 787: 139481
  • Muhly, JD. The beginning of metallurgy in the old world, the beginning of the use of metals and alloys, MIT Press: Cambridge MA, USA, 1988.
  • Yener, KA, Geçkinli, AE, Özbal, H. A brief survey of Anatolian metallurgy prior 500 BC, Proceedings of 29th Int. Symp. on Archaeom., İstanbul, Turkey, 1994, pp 375-391.
  • Hajkazemi, J, Zarei-Hanzaki, A, Sabet, M, Khoddam, S. 2011. Double-hit compression behavior of TWIP steels. Materials Science and Engineering A; 530: 233-238.
  • Hallberg, H, Wallin, M, Ristinmaa, M. 2010. Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton. Computational Materials Science; 49: 25-34.
  • Zhang, H, Zhang, H, Li, L. 2009. Hot deformation behavior of Cu–Fe–P alloys during compression at elevated temperatures. Journal of Materials Processing Technology; 209: 2892-2896.
  • Lv, J, Zheng, J-H, Yardley, VA, Shi Z, Lin, J. 2020. A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions. Metals; 10: 1516.
  • Churyumov, AY, Pozdniakov, AV. 2020. Simulation of microstructure evolution in metal materials under hot plastic deformation and heat treatment. Physics Metals and Metallography; 121: 1064-1086.
  • Gao, W, Belyakov, A, Miura, H, Sakai, T. 1999. Dynamic recrystallization of copper polycrystals with different purities. Materials Science and Engineering A, 265: 233-239.
  • Favre, J, Fabre` Gue, D, Piot, D, Tang, N, Koizumi, Y, Maire, E, Chiba, A. 2013. Modeling grain boundary motion and dynamic recrystallization in pure metals. Metallurgical and Materials Transactions A; 44: 5861-5875.
  • Vöse, M, Otto, F, Fedelich, B, Eggeler, G. 2014. Micromechanical investigations and modelling of a Copper–Antimony-Alloy under creep conditions. Mechanics of Materials; 69: 41-62.
  • Srivastava, V, Mcnee, KR, Jones, H, Greenwood, GW. 2003. The effect of low stresses on creep and surface profiles of thin copper wires. Acta Materialia; 51: 4611-4619.
  • Zhu, YT, Liao, XZ, Wu, XL. 2012. Deformation twinning in nanocrystalline materials. Progress in Materials Science; 57: 1-62.
  • Meyers, MA, Mishra, A, Benson, DJ. 2006. Mechanical properties of nanocrystalline materials. Progress in Materials Science; 51: 427-556.
  • Zinkle, SJ. 2014. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications. Journal of Nuclear Materials; 449: 277-289.
  • Zhang, H, Zhang, H-Gang, Peng, D. 2006. Hot deformation behavior of KFC copper alloy during compression at elevated temperatures. Transactions of Nonferrous Metals Society of China; 16 562-566.
  • Jonas, JJ, Toth, LS, Urabe, T. 1994. Modelling the effects of static and dynamic recrystallization on texture development. Materials Science Forum; 157: 1713-1730.
  • Belyakov, A, Miura, H, Sakai, T. 1998. Dynamic recrystallization under warm deformation of polycrystalline copper. ISIJ International; 38: 595-601.
  • Yamagata, H. 1995. Dynamic recrystallization and dynamic recovery in pure aluminum at 583 K. Acta Metallurgica et Materialia; 43: 723-729.
  • Lim, LC, Lu, HH. 1994. Dynamic grain growth and ductility enhancement at intermediate temperature. Materials Science and Engineering A; 176: 439-446.
  • Hameda, AA, Blaz, L. 1998. Microstructure of hot-deformed Cu–3.45 wt.% Ti alloy. Materials Science and Engineering A; 254: 83-89.
  • Manonukul, A, Dunne, FPE. 1999. Initiation of dynamic recrystallization under inhomogeneous stress states in pure copper. Acta Materialia; 47: 4339-4354.
  • Lin, J, Cheng, J. 1999. Dynamic recrystallization during hot torsion of Al-9Mg alloy. Transactions of Nonferrous Metals Society of China; 9: 799-805.
  • Muto, A, Kawagishi, S, Tagami, M. 1999. Effects of grain size and strain rate on ductility of Cu-30 mass % Zn alloy at 673 K. Journal of the Japan Institute of Metals; 63: 1062-1068.
  • Yagi, H, Tsuji, N, Saito, Y. 2000. Dynamic recrystallization in 18%Cr ferritic steel. ISIJ International; 86: 349-356.
  • Mejía, I, Bedolla-Jacuinde, A, Maldonado, C, Cabrera, JM. 2011. Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels. Materials Science and Engineering A; 528: 4133-4140.
  • Quan, G, Li, G, Chen, T, Wang, Y, Zhang, Y, Zhou, J. 2011. Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates. Materials Science and Engineering A; 528: 4643-4651.
  • Wu, B, Li, MQ, Ma, DW. 2012. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy. Materials Science and Engineering A; 54: 279-287.
  • Pande, CS, Cooper, KP. 2009. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Progress in Materials Science; 54: 689-706.
  • Guo, Y, Britton, TB, Wilkinson, AJ. 2014. Slip band-grain boundary interactions in commercial-purity titanium. Acta Materialia; 76: 1-12.
  • Fan, XG, Yang, H, Sun, ZC, Zhang, DW. 2010. Quantitative analysis of dynamic recrystallization behavior using a grain boundary evolution based kinetic model. Materials Science and Engineering A; 527: 5368-5377.
  • Sakai, T, Jonas, JJ. 1984. Dynamic recrystallization: Mechanical and microstructural considerations. Acta Metallurgica; 32: 189-209.
  • Yıldırım, S. Mechanical behavior of pure copper at elevated temperatures: dynamic recrystallization and dynamic grain growth. PhD. thesis, Istanbul Technical University, Institute of Science and Technology, 2001.
  • Fujiwara, S, Abiko, K. 1995. Ductility of ultra-high purity copper. Le Journal de Physique IV;05 C7: C7-295-C7-300.
  • Henderson, PJ, Sandström, R. 1998. Low temperature creep ductility of OFHC copper. Materials Science and Engineering A; 246: 143-150.
  • Ozgowicz, W. 2005. The relationship between hot ductility and intergranular fracture in a CuSn6P alloy at elevated temperatures. Journal of Materials Processing Technology; 162-163: 392-401.
  • Dieter G E. Mechanical metallurgy (SI metric edition), adapted by David Bacon; McGraw-Hill Book Company, London, U.K., 1988.
  • Sabirov, I, Estrin, Y, Barnett, MR, Timokhina, I, Hodgson, PD. 2008. Tensile deformation of an ultrafine-grained aluminium alloy: Micro shear banding and grain boundary sliding. Acta Materialia; 56: 2223-2230
Year 2022, Volume: 18 Issue: 2, 119 - 127, 30.06.2021
https://doi.org/10.18466/cbayarfbe.1009553

Abstract

References

  • Karbasian, H, Tekkaya, AE. 2010. A review on hot stamping. Journal of Materials Processing Technology; 210: 2103-2118.
  • Huang, F, Chen, Q, Ding, H, Wang, Y, Mou X, Chen, J. 2021. Automotive steel with a high product of strength and elongation used for cold and hot forming simultaneously. Materials; 14: 1121.
  • Jeswiet, J, Geiger, M, Engel, U, Kleiner, M, Schikorra, M, Duflou, J, Neugebauer, R, Bariani, P, Bruschi, S. 2008. Metal forming progress since 2000. CIRP Journal of Manufacturing Science and Technology; 1: 2-17.
  • Hu, P., Ma, N., Liu, Lz., Zhu, YG. Hot forming process. Theories, methods and numerical technology of sheet metal cold and hot forming. springer series in advanced manufacturing. Springer, London, U.K., 2013.
  • Kumar, F.B., Sharma, A., Oraon, M. Future research potentials of hot rolling process: a review. In: Chattopadhyay, J., Singh, R., Prakash, O. (eds) Innovation in Materials Science and Engineering. Springer, Singapore, 2019.
  • Bhoyar, V, Umredkar, S. 2020. Manufacturing processes part II: a brief review on rolling & extrusion, International Journal of Innovations in Engineering and Science, 5: 33-37.
  • Blum, W, Li, YJ, Durst, K. 2009. Stability of ultrafine-grained Cu to subgrain coarsening and recrystallization in annealing and deformation at elevated temperatures. Acta Materialia; 57: 5207-5217.
  • Li, X, Xia, W, Yan, H, Chen, J, Su, B, Song, M, Li, Z, Lu, Y. 2020. High strength and large ductility of a fine-grained Al–Mg alloy processed by high strain rate hot rolling and cold Rolling. Materials Science and Engineering A; 787: 139481
  • Muhly, JD. The beginning of metallurgy in the old world, the beginning of the use of metals and alloys, MIT Press: Cambridge MA, USA, 1988.
  • Yener, KA, Geçkinli, AE, Özbal, H. A brief survey of Anatolian metallurgy prior 500 BC, Proceedings of 29th Int. Symp. on Archaeom., İstanbul, Turkey, 1994, pp 375-391.
  • Hajkazemi, J, Zarei-Hanzaki, A, Sabet, M, Khoddam, S. 2011. Double-hit compression behavior of TWIP steels. Materials Science and Engineering A; 530: 233-238.
  • Hallberg, H, Wallin, M, Ristinmaa, M. 2010. Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton. Computational Materials Science; 49: 25-34.
  • Zhang, H, Zhang, H, Li, L. 2009. Hot deformation behavior of Cu–Fe–P alloys during compression at elevated temperatures. Journal of Materials Processing Technology; 209: 2892-2896.
  • Lv, J, Zheng, J-H, Yardley, VA, Shi Z, Lin, J. 2020. A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions. Metals; 10: 1516.
  • Churyumov, AY, Pozdniakov, AV. 2020. Simulation of microstructure evolution in metal materials under hot plastic deformation and heat treatment. Physics Metals and Metallography; 121: 1064-1086.
  • Gao, W, Belyakov, A, Miura, H, Sakai, T. 1999. Dynamic recrystallization of copper polycrystals with different purities. Materials Science and Engineering A, 265: 233-239.
  • Favre, J, Fabre` Gue, D, Piot, D, Tang, N, Koizumi, Y, Maire, E, Chiba, A. 2013. Modeling grain boundary motion and dynamic recrystallization in pure metals. Metallurgical and Materials Transactions A; 44: 5861-5875.
  • Vöse, M, Otto, F, Fedelich, B, Eggeler, G. 2014. Micromechanical investigations and modelling of a Copper–Antimony-Alloy under creep conditions. Mechanics of Materials; 69: 41-62.
  • Srivastava, V, Mcnee, KR, Jones, H, Greenwood, GW. 2003. The effect of low stresses on creep and surface profiles of thin copper wires. Acta Materialia; 51: 4611-4619.
  • Zhu, YT, Liao, XZ, Wu, XL. 2012. Deformation twinning in nanocrystalline materials. Progress in Materials Science; 57: 1-62.
  • Meyers, MA, Mishra, A, Benson, DJ. 2006. Mechanical properties of nanocrystalline materials. Progress in Materials Science; 51: 427-556.
  • Zinkle, SJ. 2014. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications. Journal of Nuclear Materials; 449: 277-289.
  • Zhang, H, Zhang, H-Gang, Peng, D. 2006. Hot deformation behavior of KFC copper alloy during compression at elevated temperatures. Transactions of Nonferrous Metals Society of China; 16 562-566.
  • Jonas, JJ, Toth, LS, Urabe, T. 1994. Modelling the effects of static and dynamic recrystallization on texture development. Materials Science Forum; 157: 1713-1730.
  • Belyakov, A, Miura, H, Sakai, T. 1998. Dynamic recrystallization under warm deformation of polycrystalline copper. ISIJ International; 38: 595-601.
  • Yamagata, H. 1995. Dynamic recrystallization and dynamic recovery in pure aluminum at 583 K. Acta Metallurgica et Materialia; 43: 723-729.
  • Lim, LC, Lu, HH. 1994. Dynamic grain growth and ductility enhancement at intermediate temperature. Materials Science and Engineering A; 176: 439-446.
  • Hameda, AA, Blaz, L. 1998. Microstructure of hot-deformed Cu–3.45 wt.% Ti alloy. Materials Science and Engineering A; 254: 83-89.
  • Manonukul, A, Dunne, FPE. 1999. Initiation of dynamic recrystallization under inhomogeneous stress states in pure copper. Acta Materialia; 47: 4339-4354.
  • Lin, J, Cheng, J. 1999. Dynamic recrystallization during hot torsion of Al-9Mg alloy. Transactions of Nonferrous Metals Society of China; 9: 799-805.
  • Muto, A, Kawagishi, S, Tagami, M. 1999. Effects of grain size and strain rate on ductility of Cu-30 mass % Zn alloy at 673 K. Journal of the Japan Institute of Metals; 63: 1062-1068.
  • Yagi, H, Tsuji, N, Saito, Y. 2000. Dynamic recrystallization in 18%Cr ferritic steel. ISIJ International; 86: 349-356.
  • Mejía, I, Bedolla-Jacuinde, A, Maldonado, C, Cabrera, JM. 2011. Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels. Materials Science and Engineering A; 528: 4133-4140.
  • Quan, G, Li, G, Chen, T, Wang, Y, Zhang, Y, Zhou, J. 2011. Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates. Materials Science and Engineering A; 528: 4643-4651.
  • Wu, B, Li, MQ, Ma, DW. 2012. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy. Materials Science and Engineering A; 54: 279-287.
  • Pande, CS, Cooper, KP. 2009. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Progress in Materials Science; 54: 689-706.
  • Guo, Y, Britton, TB, Wilkinson, AJ. 2014. Slip band-grain boundary interactions in commercial-purity titanium. Acta Materialia; 76: 1-12.
  • Fan, XG, Yang, H, Sun, ZC, Zhang, DW. 2010. Quantitative analysis of dynamic recrystallization behavior using a grain boundary evolution based kinetic model. Materials Science and Engineering A; 527: 5368-5377.
  • Sakai, T, Jonas, JJ. 1984. Dynamic recrystallization: Mechanical and microstructural considerations. Acta Metallurgica; 32: 189-209.
  • Yıldırım, S. Mechanical behavior of pure copper at elevated temperatures: dynamic recrystallization and dynamic grain growth. PhD. thesis, Istanbul Technical University, Institute of Science and Technology, 2001.
  • Fujiwara, S, Abiko, K. 1995. Ductility of ultra-high purity copper. Le Journal de Physique IV;05 C7: C7-295-C7-300.
  • Henderson, PJ, Sandström, R. 1998. Low temperature creep ductility of OFHC copper. Materials Science and Engineering A; 246: 143-150.
  • Ozgowicz, W. 2005. The relationship between hot ductility and intergranular fracture in a CuSn6P alloy at elevated temperatures. Journal of Materials Processing Technology; 162-163: 392-401.
  • Dieter G E. Mechanical metallurgy (SI metric edition), adapted by David Bacon; McGraw-Hill Book Company, London, U.K., 1988.
  • Sabirov, I, Estrin, Y, Barnett, MR, Timokhina, I, Hodgson, PD. 2008. Tensile deformation of an ultrafine-grained aluminium alloy: Micro shear banding and grain boundary sliding. Acta Materialia; 56: 2223-2230
There are 45 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Selim Yıldırım 0000-0002-9054-8306

Mustafa Merih Arıkan 0000-0002-5820-1871

Publication Date June 30, 2021
Published in Issue Year 2022 Volume: 18 Issue: 2

Cite

APA Yıldırım, S., & Arıkan, M. M. (2021). The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures. Celal Bayar University Journal of Science, 18(2), 119-127. https://doi.org/10.18466/cbayarfbe.1009553
AMA Yıldırım S, Arıkan MM. The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures. CBUJOS. June 2021;18(2):119-127. doi:10.18466/cbayarfbe.1009553
Chicago Yıldırım, Selim, and Mustafa Merih Arıkan. “The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures”. Celal Bayar University Journal of Science 18, no. 2 (June 2021): 119-27. https://doi.org/10.18466/cbayarfbe.1009553.
EndNote Yıldırım S, Arıkan MM (June 1, 2021) The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures. Celal Bayar University Journal of Science 18 2 119–127.
IEEE S. Yıldırım and M. M. Arıkan, “The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures”, CBUJOS, vol. 18, no. 2, pp. 119–127, 2021, doi: 10.18466/cbayarfbe.1009553.
ISNAD Yıldırım, Selim - Arıkan, Mustafa Merih. “The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures”. Celal Bayar University Journal of Science 18/2 (June 2021), 119-127. https://doi.org/10.18466/cbayarfbe.1009553.
JAMA Yıldırım S, Arıkan MM. The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures. CBUJOS. 2021;18:119–127.
MLA Yıldırım, Selim and Mustafa Merih Arıkan. “The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures”. Celal Bayar University Journal of Science, vol. 18, no. 2, 2021, pp. 119-27, doi:10.18466/cbayarfbe.1009553.
Vancouver Yıldırım S, Arıkan MM. The Effect of Strain Rate and Initial Grain Size on Deformation Behavior of OFHC Copper at Elevated Temperatures. CBUJOS. 2021;18(2):119-27.