Research Article
BibTex RIS Cite

Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure

Year 2024, Volume: 20 Issue: 1, 23 - 28, 27.03.2024
https://doi.org/10.18466/cbayarfbe.1396129

Abstract

We fabricated a heterojunction structure composed of n-CdS and p-C10H10N2 films. The CdS film was prepared using the CBD method, while the C10H10N2 film was prepared using the spin coating method. Later, we performed the current-voltage (I-V) measurement of this PN diode which we made using Keithley 2400 sourcemeter. As can be seen from the logI-V diagram, this heterojunction structure exhibits rectifying properties. Using traditional methods, an ideality factor (n) of 1.93 and a barrier height value (Φb) of 0.79 eV were determined. An ideality factor of more than one indicates non-ideal I-V behavior in the CdS/C10H10N2 heterojunction diode formed. The interface layer, interface states and series resistance are some of the causes of this deviation. Moreover, Cheung's functions and a modified Norde function were used to determine the diode parameters, such as ideality factor, barrier height, and series resistance. With the Cheung method, n=4.33, series resistance (RS)=168.65 kΩ and Φb=0.62 eV were found. Additionally, RS=686.08 kΩ and Φb=0.78 eV were found by the Norde method. Consistent barrier height values were found in all methods through comparison, suggesting compatibility. However, it was discovered that the series resistance values yielded by the Norde function exceeded those obtained by the Cheung functions.

References

  • [1]. Demir, R. and F. Gode, Structural, optical and electrical properties of nanocrystalline CdS thin films grown by chemical bath deposition method. Chalcogenide Letters, 2015. 12: p. 43-50.
  • [2]. Demir, R. and F. Göde, Preparation and Characterization of Polycrystalline CdS Thin Films Deposited by Chemical Bath Deposition. Materials Focus, 2018. 7(3): p. 351-355.
  • [3]. Braun, D.E., et al., Solid state forms of 4-aminoquinaldine - From void structures with and without solvent inclusion to close packing. CrystEngComm, 2015. 17(12): p. 2504-2516.
  • [4]. Puviarasan N., A.V., Mohan S., FTIR and FT-Raman Spectral Investigations on 4-Aminoquinaldine and 5-Aminoquinoline. Turk J Chem, 2004. 28: p. 53-65.
  • [5]. Arjunan, V., et al., Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline. Spectrochim Acta A Mol Biomol Spectrosc, 2009. 74(2): p. 375-84.
  • [6]. Kovi Peter J., C.A.C., Schulman Stephen G., Electronic Spectra of 2-Aminoquinoline and 4-Aminoquinaldme Evidence for the Cyclic Amidine Structures of the Singly Protonated Cations. Analytical Chemistry, 1972. 44: p. 1611-1615.
  • [7]. Demir, R. and İ. Kaya, Comparison of electrical characteristics of zinc oxide and cadmium sulfide films covered with 8-hydroxyquinoline for diode applications. Journal of Materials Science: Materials in Electronics, 2019. 30(7): p. 7103-7109.
  • [8]. Aybek A. Ş., R.H., Some Physical Properties of FTO/n-CdS/Au Structure. Chalcogenide Letters, 2018. 15: p. 583-590.
  • [9]. Demir, H.Ö., et al., Synthesis, characterization and diode application of poly(4-(1-(2-phenylhydrazono)ethyl)phenol). Journal of Materials Chemistry C, 2015. 3(22): p. 5803-5810.
  • [10]. Kaya, İ., et al., Synthesis and characterization of imine polymers of aromatic aldehydes with 4-amino-2-methylquinoline via oxidative polycondensation. Designed Monomers and Polymers, 2015. 18(1): p. 89-104.
  • [11]. Coşkun, E., et al., Device behavior of an In/p-Ag(Ga,In)Te2/n-Si/Ag heterojunction diode. Materials Science in Semiconductor Processing, 2015. 34: p. 138-145.
  • [12]. Dey, S.K., S. Baglari, and D. Sarkar, Junction characteristics of ITO/PANI-ZnS/Ag and ITO/PANI-CdS/Ag Schottky diodes: a comparative study. Indian Journal of Physics, 2015. 90(1): p. 29-34.
  • [13]. Cheung, S.K. and N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters, 1986. 49(2): p. 85-87.
  • [14]. Norde, H., A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 1979. 50(7): p. 5052-5053.
  • [15]. Turut, A., Determination of barrier height temperature coefficient by Norde's method in ideal Co/n-GaAs Schottky contacts. Turkish Journal of Physics, 2012.
  • [16]. Karataş, Ş. and F. Yakuphanoğlu, Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction. Journal of Alloys and Compounds, 2012. 537: p. 6-11.
  • [17]. Karataş, Ş. and F. Yakuphanoglu, Effects of illumination on electrical parameters of Ag/n-CdO/p-Si diode. Materials Chemistry and Physics, 2013. 138: p. 72-77.
Year 2024, Volume: 20 Issue: 1, 23 - 28, 27.03.2024
https://doi.org/10.18466/cbayarfbe.1396129

Abstract

References

  • [1]. Demir, R. and F. Gode, Structural, optical and electrical properties of nanocrystalline CdS thin films grown by chemical bath deposition method. Chalcogenide Letters, 2015. 12: p. 43-50.
  • [2]. Demir, R. and F. Göde, Preparation and Characterization of Polycrystalline CdS Thin Films Deposited by Chemical Bath Deposition. Materials Focus, 2018. 7(3): p. 351-355.
  • [3]. Braun, D.E., et al., Solid state forms of 4-aminoquinaldine - From void structures with and without solvent inclusion to close packing. CrystEngComm, 2015. 17(12): p. 2504-2516.
  • [4]. Puviarasan N., A.V., Mohan S., FTIR and FT-Raman Spectral Investigations on 4-Aminoquinaldine and 5-Aminoquinoline. Turk J Chem, 2004. 28: p. 53-65.
  • [5]. Arjunan, V., et al., Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline. Spectrochim Acta A Mol Biomol Spectrosc, 2009. 74(2): p. 375-84.
  • [6]. Kovi Peter J., C.A.C., Schulman Stephen G., Electronic Spectra of 2-Aminoquinoline and 4-Aminoquinaldme Evidence for the Cyclic Amidine Structures of the Singly Protonated Cations. Analytical Chemistry, 1972. 44: p. 1611-1615.
  • [7]. Demir, R. and İ. Kaya, Comparison of electrical characteristics of zinc oxide and cadmium sulfide films covered with 8-hydroxyquinoline for diode applications. Journal of Materials Science: Materials in Electronics, 2019. 30(7): p. 7103-7109.
  • [8]. Aybek A. Ş., R.H., Some Physical Properties of FTO/n-CdS/Au Structure. Chalcogenide Letters, 2018. 15: p. 583-590.
  • [9]. Demir, H.Ö., et al., Synthesis, characterization and diode application of poly(4-(1-(2-phenylhydrazono)ethyl)phenol). Journal of Materials Chemistry C, 2015. 3(22): p. 5803-5810.
  • [10]. Kaya, İ., et al., Synthesis and characterization of imine polymers of aromatic aldehydes with 4-amino-2-methylquinoline via oxidative polycondensation. Designed Monomers and Polymers, 2015. 18(1): p. 89-104.
  • [11]. Coşkun, E., et al., Device behavior of an In/p-Ag(Ga,In)Te2/n-Si/Ag heterojunction diode. Materials Science in Semiconductor Processing, 2015. 34: p. 138-145.
  • [12]. Dey, S.K., S. Baglari, and D. Sarkar, Junction characteristics of ITO/PANI-ZnS/Ag and ITO/PANI-CdS/Ag Schottky diodes: a comparative study. Indian Journal of Physics, 2015. 90(1): p. 29-34.
  • [13]. Cheung, S.K. and N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters, 1986. 49(2): p. 85-87.
  • [14]. Norde, H., A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 1979. 50(7): p. 5052-5053.
  • [15]. Turut, A., Determination of barrier height temperature coefficient by Norde's method in ideal Co/n-GaAs Schottky contacts. Turkish Journal of Physics, 2012.
  • [16]. Karataş, Ş. and F. Yakuphanoğlu, Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction. Journal of Alloys and Compounds, 2012. 537: p. 6-11.
  • [17]. Karataş, Ş. and F. Yakuphanoglu, Effects of illumination on electrical parameters of Ag/n-CdO/p-Si diode. Materials Chemistry and Physics, 2013. 138: p. 72-77.
There are 17 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Articles
Authors

Ramazan Demir 0000-0003-4130-4927

İsmet Kaya 0000-0002-9813-2962

Publication Date March 27, 2024
Submission Date November 26, 2023
Acceptance Date March 13, 2024
Published in Issue Year 2024 Volume: 20 Issue: 1

Cite

APA Demir, R., & Kaya, İ. (2024). Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(1), 23-28. https://doi.org/10.18466/cbayarfbe.1396129
AMA Demir R, Kaya İ. Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure. CBUJOS. March 2024;20(1):23-28. doi:10.18466/cbayarfbe.1396129
Chicago Demir, Ramazan, and İsmet Kaya. “Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, no. 1 (March 2024): 23-28. https://doi.org/10.18466/cbayarfbe.1396129.
EndNote Demir R, Kaya İ (March 1, 2024) Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 1 23–28.
IEEE R. Demir and İ. Kaya, “Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure”, CBUJOS, vol. 20, no. 1, pp. 23–28, 2024, doi: 10.18466/cbayarfbe.1396129.
ISNAD Demir, Ramazan - Kaya, İsmet. “Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/1 (March 2024), 23-28. https://doi.org/10.18466/cbayarfbe.1396129.
JAMA Demir R, Kaya İ. Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure. CBUJOS. 2024;20:23–28.
MLA Demir, Ramazan and İsmet Kaya. “Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 20, no. 1, 2024, pp. 23-28, doi:10.18466/cbayarfbe.1396129.
Vancouver Demir R, Kaya İ. Electrical Characteristics of Cadmium Sulfide/4-Amino-2-Methyl-Quinoline Heterojunction Structure. CBUJOS. 2024;20(1):23-8.