Research Article
BibTex RIS Cite

Cholesky algorithm of a Lucas type matrix

Year 2024, , 131 - 146, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1340330

Abstract

Many generalizations have been made for Fibonacci and Lucas number sequences and many properties have been found about these sequences. In the article [13], the authors obtained many features of these sequences with the Cholesky decomposition algorithm, using the 2 x 2 matrix belonging to a generalization of the Fibonacci sequence. In this study, it is shown that many different features can be found by using a 2 x 2 matrix belonging to the Lucas number sequence with the same method.

References

  • Abramowitz, M., Stegun, I., Handbook of Mathematical Functions, Dover, New York, 1972.
  • Basin, S. L., Hoggatts V. E. Jr., A primer on the Fibonacci sequence: Part II., Fibonacci Quarterly, 1(2) (1963), 47-52.
  • Bergum, G. E., Hoggatt, V. E. Jr., An application of the characteristic of the generalized Fibonacci sequence, Fibonacci Quarterly, 15(3) (1977), 215-220.
  • Bicknell, M., A primer on the Pell Sequence and related sequences, Fibonacci Quarterly, 13(4) (1975), 345-49.
  • Clarke, J. H., Shannon, A. G., Some generalized Lucas sequences, Fibonacci Quarterly, 23(2) (1985), 120-25.
  • Filipponi, P., Horadam A. F., A matrix approach to certain identities, Fibonacci Quarterly, 26(2) (1988), 115-26.
  • Gantmacher, F. R., The Theory of Matrices, Ams Chelsea, 1960.
  • Golub, G. H., Van Loan, C. F., Matrix Computations (3rd ed.), Johns Hopkins, 1996.
  • Hoggatt, V. E. Jr., Bicknell, M. J., Generalized Lucas sequences, Fibonacci Quarterly, 15(2) (1977), 131-39.
  • Horadam, A. F., A generalized Fibonacci sequence, Amer. Math. Monthly, 68(5) (1961), 455- 59. https://doi.org/10.2307/2311099
  • Horadam, A. F., Generating functions for powers of certain generalized sequences of numbers, Duke Math. J., 32 (1965), 437-59. https://doi.org/10.1215/S0012-7094-65-03244-8
  • Horadam, A. F., Mahon, J. M., Pell and Pell-Lucas polynomials, Fibonacci Quarterly, 23(1) (1985), 7-20.
  • Horadam, A. F., Filipponi, P., Cholesky algoritm matrices of Fibonacci type and properties of generalized sequences, Fibonacci Quarterly, 29(2) (1991), 164-173.
  • Kalman, D., Mena, R., The Fibonacci numbers-exposed, Math. Mag., 76 (2003), 167-181. https://doi.org/10.2307/3219318
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2017.
  • Köken, F., Bozkurt, D., On Lucas numbers by the matrix method, Hacettepe Journal of Mathematics and Statistics, 39(4) (2010), 471-475. https://doi.org/10.1080/03610910903480834
  • Lucas, E., Theorie des Nombres, Blanchard, 1961.
  • Mahon, J. M., Horadam, A. F., Matrix and other summation techniques for Pell polynomials, Fibonacci Quarterly, 24(4) (1986), 290-308.
  • Pethe, S., Horadam, A. F., Generalized Gaussian Fibonacci numbers, Bull. of the Australian Math. Soc., 33(1) (1986), 37-48. https://doi.org/10.1017/S0004972700002847
  • Shannon, A. G., Fibonacci annalogs of the classical polynomials, Math. Magazine, 48 (1975), 123-130. https://doi.org/10.1080/0025570X.1975.11976463
  • Siegel, M. R., Manualedi Matematica. Milan: ETAS Libris S.p.A., 1974.
  • Tan, E., On bi-periodic Fibonacci and Lucas numbers by matrix method, Ars Combinatoria, 133 (2017), 107–113.
  • Tan, E., Some properties of the bi-periodic Horadam sequences, Notes On Number Theory and Discrete Mathematics, 23(4) (2017), 56-65.
  • Tan, E., Ekin, A. B., Some identities on conditional sequences by using matrix method, Miskolc Math. Notes, 18(1) (2017), 469-477.
  • Tan, E., Dağlı, M., Belkhir, A., Biperiodic incomplete Horadam numbers, Turkish Journal of Mathematics, 47 (2023), 554-564. https://doi.org/10.55730/1300-0098.3378
  • Tan, E., Leung, H. H., Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences, Advances in Difference Equations, 26 (2020), 1-11.
  • Vajda, S., Fibonacci & Lucas Numbers and the Golden Section, John Wiley & Sons, 1989.
  • Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford: Clarendon Press, 1965.
Year 2024, , 131 - 146, 16.03.2024
https://doi.org/10.31801/cfsuasmas.1340330

Abstract

References

  • Abramowitz, M., Stegun, I., Handbook of Mathematical Functions, Dover, New York, 1972.
  • Basin, S. L., Hoggatts V. E. Jr., A primer on the Fibonacci sequence: Part II., Fibonacci Quarterly, 1(2) (1963), 47-52.
  • Bergum, G. E., Hoggatt, V. E. Jr., An application of the characteristic of the generalized Fibonacci sequence, Fibonacci Quarterly, 15(3) (1977), 215-220.
  • Bicknell, M., A primer on the Pell Sequence and related sequences, Fibonacci Quarterly, 13(4) (1975), 345-49.
  • Clarke, J. H., Shannon, A. G., Some generalized Lucas sequences, Fibonacci Quarterly, 23(2) (1985), 120-25.
  • Filipponi, P., Horadam A. F., A matrix approach to certain identities, Fibonacci Quarterly, 26(2) (1988), 115-26.
  • Gantmacher, F. R., The Theory of Matrices, Ams Chelsea, 1960.
  • Golub, G. H., Van Loan, C. F., Matrix Computations (3rd ed.), Johns Hopkins, 1996.
  • Hoggatt, V. E. Jr., Bicknell, M. J., Generalized Lucas sequences, Fibonacci Quarterly, 15(2) (1977), 131-39.
  • Horadam, A. F., A generalized Fibonacci sequence, Amer. Math. Monthly, 68(5) (1961), 455- 59. https://doi.org/10.2307/2311099
  • Horadam, A. F., Generating functions for powers of certain generalized sequences of numbers, Duke Math. J., 32 (1965), 437-59. https://doi.org/10.1215/S0012-7094-65-03244-8
  • Horadam, A. F., Mahon, J. M., Pell and Pell-Lucas polynomials, Fibonacci Quarterly, 23(1) (1985), 7-20.
  • Horadam, A. F., Filipponi, P., Cholesky algoritm matrices of Fibonacci type and properties of generalized sequences, Fibonacci Quarterly, 29(2) (1991), 164-173.
  • Kalman, D., Mena, R., The Fibonacci numbers-exposed, Math. Mag., 76 (2003), 167-181. https://doi.org/10.2307/3219318
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2017.
  • Köken, F., Bozkurt, D., On Lucas numbers by the matrix method, Hacettepe Journal of Mathematics and Statistics, 39(4) (2010), 471-475. https://doi.org/10.1080/03610910903480834
  • Lucas, E., Theorie des Nombres, Blanchard, 1961.
  • Mahon, J. M., Horadam, A. F., Matrix and other summation techniques for Pell polynomials, Fibonacci Quarterly, 24(4) (1986), 290-308.
  • Pethe, S., Horadam, A. F., Generalized Gaussian Fibonacci numbers, Bull. of the Australian Math. Soc., 33(1) (1986), 37-48. https://doi.org/10.1017/S0004972700002847
  • Shannon, A. G., Fibonacci annalogs of the classical polynomials, Math. Magazine, 48 (1975), 123-130. https://doi.org/10.1080/0025570X.1975.11976463
  • Siegel, M. R., Manualedi Matematica. Milan: ETAS Libris S.p.A., 1974.
  • Tan, E., On bi-periodic Fibonacci and Lucas numbers by matrix method, Ars Combinatoria, 133 (2017), 107–113.
  • Tan, E., Some properties of the bi-periodic Horadam sequences, Notes On Number Theory and Discrete Mathematics, 23(4) (2017), 56-65.
  • Tan, E., Ekin, A. B., Some identities on conditional sequences by using matrix method, Miskolc Math. Notes, 18(1) (2017), 469-477.
  • Tan, E., Dağlı, M., Belkhir, A., Biperiodic incomplete Horadam numbers, Turkish Journal of Mathematics, 47 (2023), 554-564. https://doi.org/10.55730/1300-0098.3378
  • Tan, E., Leung, H. H., Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences, Advances in Difference Equations, 26 (2020), 1-11.
  • Vajda, S., Fibonacci & Lucas Numbers and the Golden Section, John Wiley & Sons, 1989.
  • Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford: Clarendon Press, 1965.
There are 28 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Articles
Authors

Semih Yılmaz 0000-0003-3171-8763

Betül Erdoğan 0000-0002-6789-1528

Publication Date March 16, 2024
Submission Date August 9, 2023
Acceptance Date September 8, 2023
Published in Issue Year 2024

Cite

APA Yılmaz, S., & Erdoğan, B. (2024). Cholesky algorithm of a Lucas type matrix. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(1), 131-146. https://doi.org/10.31801/cfsuasmas.1340330
AMA Yılmaz S, Erdoğan B. Cholesky algorithm of a Lucas type matrix. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2024;73(1):131-146. doi:10.31801/cfsuasmas.1340330
Chicago Yılmaz, Semih, and Betül Erdoğan. “Cholesky Algorithm of a Lucas Type Matrix”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 1 (March 2024): 131-46. https://doi.org/10.31801/cfsuasmas.1340330.
EndNote Yılmaz S, Erdoğan B (March 1, 2024) Cholesky algorithm of a Lucas type matrix. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 1 131–146.
IEEE S. Yılmaz and B. Erdoğan, “Cholesky algorithm of a Lucas type matrix”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 1, pp. 131–146, 2024, doi: 10.31801/cfsuasmas.1340330.
ISNAD Yılmaz, Semih - Erdoğan, Betül. “Cholesky Algorithm of a Lucas Type Matrix”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/1 (March 2024), 131-146. https://doi.org/10.31801/cfsuasmas.1340330.
JAMA Yılmaz S, Erdoğan B. Cholesky algorithm of a Lucas type matrix. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:131–146.
MLA Yılmaz, Semih and Betül Erdoğan. “Cholesky Algorithm of a Lucas Type Matrix”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 1, 2024, pp. 131-46, doi:10.31801/cfsuasmas.1340330.
Vancouver Yılmaz S, Erdoğan B. Cholesky algorithm of a Lucas type matrix. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(1):131-46.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.