Research Article
BibTex RIS Cite
Year 2020, , 49 - 72, 30.06.2020
https://doi.org/10.31801/cfsuasmas.542665

Abstract

References

  • Agarwal, R. P., Luo, M.-J. and Raina, R. K., On Ostrowski type inequalities, Fasc. Math. 56 (2016), 5-27.
  • Aljinović, A. Aglić, Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral. J. Math. 2014, Art. ID 503195, 6 pp.
  • Apostol, T. M., Mathematical Analysis, Second Edition, Addison-Wesley Publishing Company, 1975.
  • Akdemir, A. O., Inequalities of Ostrowski's type for m- and (α,m)-logarithmically convex functions via Riemann-Liouville fractional integrals. J. Comput. Anal. Appl. 16 (2014), no. 2, 375--383
  • Anastassiou, G. A., Fractional representation formulae under initial conditions and fractional Ostrowski type inequalities. Demonstr. Math. 48 (2015), no. 3, 357--378
  • Anastassiou, G. A., The reduction method in fractional calculus and fractional Ostrowski type inequalities. Indian J. Math. 56 (2014), no. 3, 333--357.
  • Budak, H., Sarikaya, M. Z. and Set, E., Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex in the second sense. J. Appl. Math. Comput. Mech. 15 (2016), no. 4, 11--21.
  • Cerone, P. and Dragomir, S. S., Midpoint-type rules from an inequalities point of view. Handbook of analytic-computational methods in applied mathematics, 135--200, Chapman & Hall/CRC, Boca Raton, FL, 2000.
  • Dragomir, S. S., The Ostrowski's integral inequality for Lipschitzian mappings and applications. Comput. Math. Appl. 38 (1999), no. 11-12, 33--37.
  • Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation. Bull. Austral. Math. Soc. 60 (1999), No. 3, 495--508.
  • Dragomir, S. S., On the midpoint quadrature formula for mappings with bounded variation and applications. Kragujevac J. Math. 22 (2000), 13--19.
  • Dragomir, S. S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll. 2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf]
  • Dragomir, S. S., Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450--460.
  • Dragomir, S. S., Refinements of the Ostrowski inequality in terms of the cumulative variation and applications, Analysis (Berlin) 34 (2014), No. 2, 223--240. Preprint: RGMIA Res. Rep. Coll. 16 (2013), Art. 29 [Online:http://rgmia.org/papers/v16/v16a29.pdf].
  • Dragomir, S. S., Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
  • Dragomir, S. S., Ostrowski type inequalities for Riemann-Liouville fractional integrals of bounded variation, Hölder and Lipschitzian functions, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 48. [Online http://rgmia.org/papers/v20/v20a48.pdf].
  • Dragomir, S. S., Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 58. [Online http://rgmia.org/papers/v20/v20a58.pdf].
  • Dragomir, S. S., Further Ostrowski and trapezoid type inequalities for the generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 84. [Online http://rgmia.org/papers/v20/v20a84.pdf].
  • Dragomir, S. S., Ostrowski and trapezoid type inequalities for the generalized k-g-fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 111. [Online http://rgmia.org/papers/v20/v20a111.pdf].
  • Dragomir, S. S., Some inequalities for the generalized k-g-fractional integrals of functions under complex boundedness conditions, RGMIA Res. Rep. Coll. 20 (2017), Art. 119. [Online http://rgmia.org/papers/v20/v20a119.pdf].
  • Guezane-Lakoud, A. and Aissaoui, F., New fractional inequalities of Ostrowski type. Transylv. J. Math. Mech. 5 (2013), no. 2, 103--106
  • Kashuri, A. and Liko, R., Ostrowski type fractional integral inequalities for generalized (s,m,ϕ)-preinvex functions. Aust. J. Math. Anal. Appl. 13 (2016), no. 1, Art. 16, 11 pp.
  • Kilbas, A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. xvi+523 pp. ISBN: 978-0-444-51832-3; 0-444-51832-0.
  • Kirane, M. and Torebek, B. T., Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type Inequalities for convex functions via fractional integrals, Preprint arXiv:1701.00092.
  • Noor, M. A., Noor, K. I. and Iftikhar, S., Fractional Ostrowski inequalities for harmonic h-preinvex functions. Facta Univ. Ser. Math. Inform. 31 (2016), no. 2, 417--445
  • Raina, R. K., On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2)(2005), 191-203.
  • Sarikaya, M. Z. and Filiz, H., Note on the Ostrowski type inequalities for fractional integrals. Vietnam J. Math. 42 (2014), no. 2, 187--190
  • Sarikaya, M. Z. and Budak, H., Generalized Ostrowski type inequalities for local fractional integrals. Proc. Amer. Math. Soc. 145 (2017), no. 4, 1527--1538.
  • Set, E., New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63 (2012), no. 7, 1147--1154.
  • Tunç, M., On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27:4 (2013), 559--565.
  • Tunç, M., Ostrowski type inequalities for m- and (α,m)-geometrically convex functions via Riemann-Louville fractional integrals. Afr. Mat. 27 (2016), no. 5-6, 841--850.
  • Yildirim, H. and Kirtay, Z., Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., 2(3)(2014), 322-329.
  • Yildiz, C., Özdemir, E and Muhamet, Z. S., New generalizations of Ostrowski-like type inequalities for fractional integrals. Kyungpook Math. J. 56 (2016), no. 1, 161--172.
  • Yue, H., Ostrowski inequality for fractional integrals and related fractional inequalities. Transylv. J. Math. Mech. 5 (2013), no. 1, 85--89.

Further inequalities for the generalized k-g-fractional integrals of functions with bounded variation

Year 2020, , 49 - 72, 30.06.2020
https://doi.org/10.31801/cfsuasmas.542665

Abstract

Let g be a strictly increasing function on (a,b), having a continuous derivative g′ on (a,b). For the Lebesgue integrable function f:(a,b)→C, we define the k-g-left-sided fractional integral of f by

S_{k,g,a+}f(x)=∫_{a}^{x}k(g(x)-g(t))g′(t)f(t)dt, x∈(a,b]

and the k-g-right-sided fractional integral of f by

S_{k,g,b-}f(x)=∫_{x}^{b}k(g(t)-g(x))g′(t)f(t)dt, x∈[a,b),

where the kernel k is defined either on (0,∞) or on [0,∞) with complex values and integrable on any finite subinterval.
In this paper we establish some new inequalities for the k-g-fractional integrals of functions of bounded variation.Examples for the generalized left- and right-sided Riemann-Liouville fractional integrals of a function f with respect to another function g and a general exponential fractional integral are also provided.

References

  • Agarwal, R. P., Luo, M.-J. and Raina, R. K., On Ostrowski type inequalities, Fasc. Math. 56 (2016), 5-27.
  • Aljinović, A. Aglić, Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral. J. Math. 2014, Art. ID 503195, 6 pp.
  • Apostol, T. M., Mathematical Analysis, Second Edition, Addison-Wesley Publishing Company, 1975.
  • Akdemir, A. O., Inequalities of Ostrowski's type for m- and (α,m)-logarithmically convex functions via Riemann-Liouville fractional integrals. J. Comput. Anal. Appl. 16 (2014), no. 2, 375--383
  • Anastassiou, G. A., Fractional representation formulae under initial conditions and fractional Ostrowski type inequalities. Demonstr. Math. 48 (2015), no. 3, 357--378
  • Anastassiou, G. A., The reduction method in fractional calculus and fractional Ostrowski type inequalities. Indian J. Math. 56 (2014), no. 3, 333--357.
  • Budak, H., Sarikaya, M. Z. and Set, E., Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex in the second sense. J. Appl. Math. Comput. Mech. 15 (2016), no. 4, 11--21.
  • Cerone, P. and Dragomir, S. S., Midpoint-type rules from an inequalities point of view. Handbook of analytic-computational methods in applied mathematics, 135--200, Chapman & Hall/CRC, Boca Raton, FL, 2000.
  • Dragomir, S. S., The Ostrowski's integral inequality for Lipschitzian mappings and applications. Comput. Math. Appl. 38 (1999), no. 11-12, 33--37.
  • Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation. Bull. Austral. Math. Soc. 60 (1999), No. 3, 495--508.
  • Dragomir, S. S., On the midpoint quadrature formula for mappings with bounded variation and applications. Kragujevac J. Math. 22 (2000), 13--19.
  • Dragomir, S. S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll. 2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf]
  • Dragomir, S. S., Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450--460.
  • Dragomir, S. S., Refinements of the Ostrowski inequality in terms of the cumulative variation and applications, Analysis (Berlin) 34 (2014), No. 2, 223--240. Preprint: RGMIA Res. Rep. Coll. 16 (2013), Art. 29 [Online:http://rgmia.org/papers/v16/v16a29.pdf].
  • Dragomir, S. S., Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
  • Dragomir, S. S., Ostrowski type inequalities for Riemann-Liouville fractional integrals of bounded variation, Hölder and Lipschitzian functions, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 48. [Online http://rgmia.org/papers/v20/v20a48.pdf].
  • Dragomir, S. S., Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 58. [Online http://rgmia.org/papers/v20/v20a58.pdf].
  • Dragomir, S. S., Further Ostrowski and trapezoid type inequalities for the generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 84. [Online http://rgmia.org/papers/v20/v20a84.pdf].
  • Dragomir, S. S., Ostrowski and trapezoid type inequalities for the generalized k-g-fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 111. [Online http://rgmia.org/papers/v20/v20a111.pdf].
  • Dragomir, S. S., Some inequalities for the generalized k-g-fractional integrals of functions under complex boundedness conditions, RGMIA Res. Rep. Coll. 20 (2017), Art. 119. [Online http://rgmia.org/papers/v20/v20a119.pdf].
  • Guezane-Lakoud, A. and Aissaoui, F., New fractional inequalities of Ostrowski type. Transylv. J. Math. Mech. 5 (2013), no. 2, 103--106
  • Kashuri, A. and Liko, R., Ostrowski type fractional integral inequalities for generalized (s,m,ϕ)-preinvex functions. Aust. J. Math. Anal. Appl. 13 (2016), no. 1, Art. 16, 11 pp.
  • Kilbas, A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. xvi+523 pp. ISBN: 978-0-444-51832-3; 0-444-51832-0.
  • Kirane, M. and Torebek, B. T., Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type Inequalities for convex functions via fractional integrals, Preprint arXiv:1701.00092.
  • Noor, M. A., Noor, K. I. and Iftikhar, S., Fractional Ostrowski inequalities for harmonic h-preinvex functions. Facta Univ. Ser. Math. Inform. 31 (2016), no. 2, 417--445
  • Raina, R. K., On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2)(2005), 191-203.
  • Sarikaya, M. Z. and Filiz, H., Note on the Ostrowski type inequalities for fractional integrals. Vietnam J. Math. 42 (2014), no. 2, 187--190
  • Sarikaya, M. Z. and Budak, H., Generalized Ostrowski type inequalities for local fractional integrals. Proc. Amer. Math. Soc. 145 (2017), no. 4, 1527--1538.
  • Set, E., New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63 (2012), no. 7, 1147--1154.
  • Tunç, M., On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat 27:4 (2013), 559--565.
  • Tunç, M., Ostrowski type inequalities for m- and (α,m)-geometrically convex functions via Riemann-Louville fractional integrals. Afr. Mat. 27 (2016), no. 5-6, 841--850.
  • Yildirim, H. and Kirtay, Z., Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., 2(3)(2014), 322-329.
  • Yildiz, C., Özdemir, E and Muhamet, Z. S., New generalizations of Ostrowski-like type inequalities for fractional integrals. Kyungpook Math. J. 56 (2016), no. 1, 161--172.
  • Yue, H., Ostrowski inequality for fractional integrals and related fractional inequalities. Transylv. J. Math. Mech. 5 (2013), no. 1, 85--89.
There are 34 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Sever Dragomir 0000-0003-2902-6805

Publication Date June 30, 2020
Submission Date March 21, 2019
Acceptance Date July 19, 2019
Published in Issue Year 2020

Cite

APA Dragomir, S. (2020). Further inequalities for the generalized k-g-fractional integrals of functions with bounded variation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 49-72. https://doi.org/10.31801/cfsuasmas.542665
AMA Dragomir S. Further inequalities for the generalized k-g-fractional integrals of functions with bounded variation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2020;69(1):49-72. doi:10.31801/cfsuasmas.542665
Chicago Dragomir, Sever. “Further Inequalities for the Generalized K-G-Fractional Integrals of Functions With Bounded Variation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 1 (June 2020): 49-72. https://doi.org/10.31801/cfsuasmas.542665.
EndNote Dragomir S (June 1, 2020) Further inequalities for the generalized k-g-fractional integrals of functions with bounded variation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 49–72.
IEEE S. Dragomir, “Further inequalities for the generalized k-g-fractional integrals of functions with bounded variation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 69, no. 1, pp. 49–72, 2020, doi: 10.31801/cfsuasmas.542665.
ISNAD Dragomir, Sever. “Further Inequalities for the Generalized K-G-Fractional Integrals of Functions With Bounded Variation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (June 2020), 49-72. https://doi.org/10.31801/cfsuasmas.542665.
JAMA Dragomir S. Further inequalities for the generalized k-g-fractional integrals of functions with bounded variation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:49–72.
MLA Dragomir, Sever. “Further Inequalities for the Generalized K-G-Fractional Integrals of Functions With Bounded Variation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 69, no. 1, 2020, pp. 49-72, doi:10.31801/cfsuasmas.542665.
Vancouver Dragomir S. Further inequalities for the generalized k-g-fractional integrals of functions with bounded variation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):49-72.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.