BibTex RIS Cite

ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS

Year 2013, , 37 - 51, 01.08.2013
https://doi.org/10.1501/Commua1_0000000697

Abstract

The object of the present paper is to study the Trans-Sasakianstructure on a manifold with Lorentzian metric. Several interesting results areobtained on the manifold. Also conformally *at Lorentzian Trans-Sasakianmanifolds have been studied. Next, in three- dimensional Lorentzian TransSasakian manifolds, explicit formulae for Ricci operator, Ricci tensor andcurvature tensor are obtained.Lorentzian Trans-Sasakian manifold of type ( ; ) is locallyand only if the scalar curvature r is constant providedFinally, we give some examples of three-dimensional Lorentzian Trans-Sasakianmanifold

References

  • Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer Verlag, (509)1976.
  • Blair, D. E.and Oubina, J.A., Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat.34(1)(1990), 199
  • De, U.C.and Tripathi,M.M., Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math.J.43(2)(2003),247
  • Janssen, D. and Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J.,4(1981),1
  • Gill, H. and Dube, K.K., Generalized CR- Submanifolds of a trans Lorentzian para Sasakian manifold, Proc. Nat. Acad. Sci. India Sec. A Phys. 2(2006), 119
  • Gray, A. and Hervella, L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pura Appl., (4) 123 (1980), 35
  • Ikawa, T. and Erdogan, M., Sasakian manifolds with Lorentzian metric, Kyungpook Math. J. 35(1996), 517
  • Marrero, J.C., The local structure of trans-sasakian manifolds, Ann.Mat.Pura Appl.(4)162 (1992),77-86.
  • Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Science, (1989), 151
  • Matsumoto,K. and Mihai,I., On a certain transformation in a Lorentzian Para-Sasakian Manifold, Tensor (N.S.), 47(1988), 189
  • Matsumoto, K. , Mihai,I. and Rosca, R., -null geodesic gradient vector …elds on a Lorentzian para-Sasakian manifold. J. Korean Math. Soc. 32(1995), 17
  • Mihai, I., Oiaga, A. and Rosca, R., Lorentzian Kenmotsu manifolds having two skew- sym- metric conformal vector …elds, Bull. Math. Soc. Sci. Math. Roumania, 42(1999), 237
  • Mihai,I. and Rosca, R., On Lorentzian P-Sasakian Manifolds, Classical Analysis. World Scienti…c, Singapore, 1992 155
  • Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae Debrecen 32 (1985), 21
  • Shaikh, A. A., Baishya, K. K. and Eyasmin, S., On D-homothetic deformation of trans- sasakian structure, Demonstratio Mathematica, 1 2008, 171
  • Takahashi, T., Sasakian symmetric spaces, Tohoku Math.J.(2)29, (1)(1977),91-113.
  • Yaliniz, A.F., Yildiz, A. and Turan, M., On three-dimensional Lorentzian Kenmotsu manifolds, Kuwait J. Sci. Eng. 36 (2009), 51
  • Yildiz, A., Turan, M. and Murathan, C., A class of Lorentzian Sasakian manifolds, Kyungpook Math. J. 49(2009), 789
  • Current address : Uday Chand De,, Department of Pure Mathematics,, Calcutta University ,, Kol , Krishnendu De, Konnagar High School(H.S.),, 68 G.T. Road (West),Konnagar,Hooghly, Pin.712235, West Bengal, INDIA. Road, ,West Bengal, INDIA.
  • E-mail address : uc_de@yahoo.com, krishnendu_de@yahoo.com URL: http://communications.science.ankara.edu.tr/index.php?series=A1
Year 2013, , 37 - 51, 01.08.2013
https://doi.org/10.1501/Commua1_0000000697

Abstract

References

  • Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer Verlag, (509)1976.
  • Blair, D. E.and Oubina, J.A., Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat.34(1)(1990), 199
  • De, U.C.and Tripathi,M.M., Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math.J.43(2)(2003),247
  • Janssen, D. and Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J.,4(1981),1
  • Gill, H. and Dube, K.K., Generalized CR- Submanifolds of a trans Lorentzian para Sasakian manifold, Proc. Nat. Acad. Sci. India Sec. A Phys. 2(2006), 119
  • Gray, A. and Hervella, L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pura Appl., (4) 123 (1980), 35
  • Ikawa, T. and Erdogan, M., Sasakian manifolds with Lorentzian metric, Kyungpook Math. J. 35(1996), 517
  • Marrero, J.C., The local structure of trans-sasakian manifolds, Ann.Mat.Pura Appl.(4)162 (1992),77-86.
  • Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Science, (1989), 151
  • Matsumoto,K. and Mihai,I., On a certain transformation in a Lorentzian Para-Sasakian Manifold, Tensor (N.S.), 47(1988), 189
  • Matsumoto, K. , Mihai,I. and Rosca, R., -null geodesic gradient vector …elds on a Lorentzian para-Sasakian manifold. J. Korean Math. Soc. 32(1995), 17
  • Mihai, I., Oiaga, A. and Rosca, R., Lorentzian Kenmotsu manifolds having two skew- sym- metric conformal vector …elds, Bull. Math. Soc. Sci. Math. Roumania, 42(1999), 237
  • Mihai,I. and Rosca, R., On Lorentzian P-Sasakian Manifolds, Classical Analysis. World Scienti…c, Singapore, 1992 155
  • Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae Debrecen 32 (1985), 21
  • Shaikh, A. A., Baishya, K. K. and Eyasmin, S., On D-homothetic deformation of trans- sasakian structure, Demonstratio Mathematica, 1 2008, 171
  • Takahashi, T., Sasakian symmetric spaces, Tohoku Math.J.(2)29, (1)(1977),91-113.
  • Yaliniz, A.F., Yildiz, A. and Turan, M., On three-dimensional Lorentzian Kenmotsu manifolds, Kuwait J. Sci. Eng. 36 (2009), 51
  • Yildiz, A., Turan, M. and Murathan, C., A class of Lorentzian Sasakian manifolds, Kyungpook Math. J. 49(2009), 789
  • Current address : Uday Chand De,, Department of Pure Mathematics,, Calcutta University ,, Kol , Krishnendu De, Konnagar High School(H.S.),, 68 G.T. Road (West),Konnagar,Hooghly, Pin.712235, West Bengal, INDIA. Road, ,West Bengal, INDIA.
  • E-mail address : uc_de@yahoo.com, krishnendu_de@yahoo.com URL: http://communications.science.ankara.edu.tr/index.php?series=A1
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

U.c. De This is me

Krishnendu De This is me

Publication Date August 1, 2013
Published in Issue Year 2013

Cite

APA De, U., & De, K. (2013). ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 62(2), 37-51. https://doi.org/10.1501/Commua1_0000000697
AMA De U, De K. ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2013;62(2):37-51. doi:10.1501/Commua1_0000000697
Chicago De, U.c., and Krishnendu De. “ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62, no. 2 (August 2013): 37-51. https://doi.org/10.1501/Commua1_0000000697.
EndNote De U, De K (August 1, 2013) ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62 2 37–51.
IEEE U. De and K. De, “ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 62, no. 2, pp. 37–51, 2013, doi: 10.1501/Commua1_0000000697.
ISNAD De, U.c. - De, Krishnendu. “ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 62/2 (August 2013), 37-51. https://doi.org/10.1501/Commua1_0000000697.
JAMA De U, De K. ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62:37–51.
MLA De, U.c. and Krishnendu De. “ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 62, no. 2, 2013, pp. 37-51, doi:10.1501/Commua1_0000000697.
Vancouver De U, De K. ON LORENTZIAN TRANS-SASAKIAN MANIFOLDS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2013;62(2):37-51.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.