On dynamics of quadratic stochastic operators generated by 3-partition on countable state space
Year 2024,
Volume: 73 Issue: 4, 1114 - 1133, 30.12.2024
Siti Nurlaili Karim
,
Nur Zatul Akmar Hamzah
Abstract
Quadratic stochastic operator (QSO) theory has advanced significantly since the early 1920s and is still growing due to its numerous applications in a variety of fields, particularly mathematics, where QSOs have inspired mathematicians to use and integrate various mathematical knowledge and concepts to better understand their properties and behaviors. Motivated by the relationship between the number of partitions on an infinite state space and the development of the system of equations corresponding to QSOs, this work sought to investigate the dynamics of QSOs formed by three partitions. First, we define and construct the 3-partition QSOs, which result in a system of equations with three variables. We then provide the formulation of the fixed point form and discuss its behavior using Jacobian matrix analysis. Some scenarios of three-partition QSOs with three different parameters are considered to readily investigate the type of fixed point in such systems. It is demonstrated that the operators can have either an attracting or a saddle fixed point but can never be repelling. We show how the saddle fixed point behaves, by identifying a set of points known as the fixed point’s stable manifold.
Ethical Statement
This work does not involve live subjects (human or animal). The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Project Number
Fundamental Research Grant Scheme (FRGS) grant from the Malaysian Ministry of Education, project code FRGS/1/2021/ STG06/UIAM/02/1, project ID FRGS21-219-0828
References
- Alligood, K. T., Sauer, T., Yorke, J. A., Chaos: An Introduction to Dynamical Systems, Springer, 1997.
- Akin, H., Mukhamedov, F., Orthogonality preserving infinite dimensional quadratic stochastic operators, AIP Conf. Proc., 1676 (2015). https://doi: 10.1063/1.4930434
- Bernstein, S. N., Mathematical problems of modern biology, Nauka na Ukraine, 1 (1922), 13-20.
- Ganikhodjaev, N., Akin, H., Mukhamedov, F., On the ergodic principle for Markov and quadratic stochastic processes and their relations, Linear Algebra Appl., 416 (2006), 730-741. https://doi:10.1016/j.laa.2005.12.032
- Ganikhodjaev, N., Hamzah, N. Z. A., On Poisson nonlinear transformations, Sci. World J., 2014 (2014), 832861. https://doi.org/10.1155/2014/832861
- Ganikhodjaev, N., Hamzah, N. Z. A., Geometric quadratic stochastic operator on countable infinite set, AIP Conf. Proc., 1643 (2015), 706-712. https://doi.org/10.1063/1.4907516
- Ganikhodjaev, N. Hamzah, N. Z. A., Lebesgue quadratic stochastic operators on segment [0, 1], In IEEE Proceeding: 2015 International Conference on Research and Education in Mathematics (ICREM7), (2015), 199-204. https://doi.org/10.1109/ICREM.2015.7357053
- Ganikhodjaev, N., Hamzah, N. Z. A., On Gaussian nonlinear transformations, AIP Conf. Proc., 1682 (2015), 040009. https://doi.org/10.1063/1.4932482
- Ganikhodjaev, N., Hamzah, N. Z. A., On Volterra quadratic stochastic operators with continual state space, AIP Conf. Proc., 1660 (2015), 050025. https://doi.org/10.1063/1.4915658
- Ganikhodjaev, N., Jusoo, S. H. B., Strictly non-Volterra quadratic stochastic operator (QSO) on 3-dimensional simplex, AIP Conf. Proc., 1974 (2018), 030020. https://doi.org/10.1063/1.5041664
- Ganikhodjaev, N., Khaled, F., Quadratic stochastic operators generated by mixture distributions, AIP Conf. Proc., 2423 (2021), 060004. https://doi.org/10.1063/5.0075367
- Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U., Quadratic stochastic operators and processes: results and open problems, Infn. Dimens. Anal. Quantum Probab. Relat. Top., 14(02) (2011), 279-335. https://doi.org/10.1142/s0219025711004365
- Karim, S. N., Hamzah, N. Z. A., Fauzi, N. N. M., Ganikhodjaev, N., New Class of 2-partition Poisson quadratic stochastic operators on countable state space, J. Phys. Conf. Ser., 1988(1) (2021), 012080. https://doi.org/10.1088/1742-6596/1988/1/012080
- Karim, S. N., Hamzah, N. Z. A., Ganikhodjaev, N., On the dynamics of geometric quadratic stochastic operator generated by 2-partition on countable state space, Malaysian J. Math. Sci., 16(4) (2022), 727-737. https://doi.org/10.47836/mjms.16.4.06
- Karim, S. N., Hamzah, N. Z. A., Ganikhodjaev, N., Ahmad, M. A., Abd Rhani, N., Dynamics of Lebesgue quadratic stochastic operator with nonnegative integers parameters generated by 2-partition, Results Nonlinear Anal., 6(1) (2023), 59-67, 2023.
- Karim, S. N., Hamzah, N. Z. A., Rahman, N. H. A., Zulkefli, M. F., Ganikhodjaev. N., Regularity of 2-partition Poisson quadratic stochastic operator with three different parameters, AIP Conf. Proc., 2692(1) (2023), 020001. https://doi.org/10.1063/5.0124307
- Lyubich, Y. I., Iterations of Quadratic Maps, In Mathematical Economics and Functional Analysis, Moscow, Nauka, 1974.
- Mukhamedov, F., Infinite-dimensional quadratic Volterra operators, Russ. Math. Surv., 55(6) (2000), 1161-1162. https://doi.org/10.1070/rm2000v055n06abeh000349
- Mukhamedov, F., Akin, H., Temir, S., On infinite dimensional quadratic Volterra operators, J. Math. Anal. Appl., 310(2) (2005), 533-556. https://doi.org/10.1016/j.jmaa.2005.02.022
- Saburov, M., Yusof, N. A., On uniqueness of fixed points of quadratic stochastic operators on a 2D simplex, Methods Func. Anal. Topol., 24(3) (2018), 255-264.
- Volterra, V., Fluctuations in the abundance of a species considered mathematically, Nature, 119(2983) (1927), 12-13. https://doi.org/10.1038/119012b0
Year 2024,
Volume: 73 Issue: 4, 1114 - 1133, 30.12.2024
Siti Nurlaili Karim
,
Nur Zatul Akmar Hamzah
Project Number
Fundamental Research Grant Scheme (FRGS) grant from the Malaysian Ministry of Education, project code FRGS/1/2021/ STG06/UIAM/02/1, project ID FRGS21-219-0828
References
- Alligood, K. T., Sauer, T., Yorke, J. A., Chaos: An Introduction to Dynamical Systems, Springer, 1997.
- Akin, H., Mukhamedov, F., Orthogonality preserving infinite dimensional quadratic stochastic operators, AIP Conf. Proc., 1676 (2015). https://doi: 10.1063/1.4930434
- Bernstein, S. N., Mathematical problems of modern biology, Nauka na Ukraine, 1 (1922), 13-20.
- Ganikhodjaev, N., Akin, H., Mukhamedov, F., On the ergodic principle for Markov and quadratic stochastic processes and their relations, Linear Algebra Appl., 416 (2006), 730-741. https://doi:10.1016/j.laa.2005.12.032
- Ganikhodjaev, N., Hamzah, N. Z. A., On Poisson nonlinear transformations, Sci. World J., 2014 (2014), 832861. https://doi.org/10.1155/2014/832861
- Ganikhodjaev, N., Hamzah, N. Z. A., Geometric quadratic stochastic operator on countable infinite set, AIP Conf. Proc., 1643 (2015), 706-712. https://doi.org/10.1063/1.4907516
- Ganikhodjaev, N. Hamzah, N. Z. A., Lebesgue quadratic stochastic operators on segment [0, 1], In IEEE Proceeding: 2015 International Conference on Research and Education in Mathematics (ICREM7), (2015), 199-204. https://doi.org/10.1109/ICREM.2015.7357053
- Ganikhodjaev, N., Hamzah, N. Z. A., On Gaussian nonlinear transformations, AIP Conf. Proc., 1682 (2015), 040009. https://doi.org/10.1063/1.4932482
- Ganikhodjaev, N., Hamzah, N. Z. A., On Volterra quadratic stochastic operators with continual state space, AIP Conf. Proc., 1660 (2015), 050025. https://doi.org/10.1063/1.4915658
- Ganikhodjaev, N., Jusoo, S. H. B., Strictly non-Volterra quadratic stochastic operator (QSO) on 3-dimensional simplex, AIP Conf. Proc., 1974 (2018), 030020. https://doi.org/10.1063/1.5041664
- Ganikhodjaev, N., Khaled, F., Quadratic stochastic operators generated by mixture distributions, AIP Conf. Proc., 2423 (2021), 060004. https://doi.org/10.1063/5.0075367
- Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U., Quadratic stochastic operators and processes: results and open problems, Infn. Dimens. Anal. Quantum Probab. Relat. Top., 14(02) (2011), 279-335. https://doi.org/10.1142/s0219025711004365
- Karim, S. N., Hamzah, N. Z. A., Fauzi, N. N. M., Ganikhodjaev, N., New Class of 2-partition Poisson quadratic stochastic operators on countable state space, J. Phys. Conf. Ser., 1988(1) (2021), 012080. https://doi.org/10.1088/1742-6596/1988/1/012080
- Karim, S. N., Hamzah, N. Z. A., Ganikhodjaev, N., On the dynamics of geometric quadratic stochastic operator generated by 2-partition on countable state space, Malaysian J. Math. Sci., 16(4) (2022), 727-737. https://doi.org/10.47836/mjms.16.4.06
- Karim, S. N., Hamzah, N. Z. A., Ganikhodjaev, N., Ahmad, M. A., Abd Rhani, N., Dynamics of Lebesgue quadratic stochastic operator with nonnegative integers parameters generated by 2-partition, Results Nonlinear Anal., 6(1) (2023), 59-67, 2023.
- Karim, S. N., Hamzah, N. Z. A., Rahman, N. H. A., Zulkefli, M. F., Ganikhodjaev. N., Regularity of 2-partition Poisson quadratic stochastic operator with three different parameters, AIP Conf. Proc., 2692(1) (2023), 020001. https://doi.org/10.1063/5.0124307
- Lyubich, Y. I., Iterations of Quadratic Maps, In Mathematical Economics and Functional Analysis, Moscow, Nauka, 1974.
- Mukhamedov, F., Infinite-dimensional quadratic Volterra operators, Russ. Math. Surv., 55(6) (2000), 1161-1162. https://doi.org/10.1070/rm2000v055n06abeh000349
- Mukhamedov, F., Akin, H., Temir, S., On infinite dimensional quadratic Volterra operators, J. Math. Anal. Appl., 310(2) (2005), 533-556. https://doi.org/10.1016/j.jmaa.2005.02.022
- Saburov, M., Yusof, N. A., On uniqueness of fixed points of quadratic stochastic operators on a 2D simplex, Methods Func. Anal. Topol., 24(3) (2018), 255-264.
- Volterra, V., Fluctuations in the abundance of a species considered mathematically, Nature, 119(2983) (1927), 12-13. https://doi.org/10.1038/119012b0