Generalized Hukuhara diamond-alpha derivative of fuzzy valued functions on time scales
Year 2025,
Volume: 74 Issue: 1, 103 - 116
Selami Bayeğ
,
Raziye Mert
Abstract
In the literature, the delta and nabla derivatives have been considered separately in the study of fuzzy number valued functions on time scales. In this paper, to unify these two derivatives for fuzzy number valued functions, we propose a new dynamic derivative called the diamond-alpha derivative, defined via the generalized Hukuhara difference. We establish several fundamental properties of the diamond-alpha derivative and investigate a particular class of fuzzy initial value problems on time scales with respect to this new derivative. Additionally, we provide numerical examples to illustrate our results.
References
- Agarwal, R. P., Bohner, M., Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3-22. https://doi.org/10.1007/BF03322019
- Anderson, D., Bullock, J., Erbe, L., Peterson, A., Tran, H., Nabla Dynamic Equations, In Advances in Dynamic Equations on Time Scales, Birkhaeuser, Boston, MA, 2003, 47-83. https://doi.org/10.1007/978-0-8176-8230-9 3
- Bede, B., Gal, S. G., Generalizations of the differentiability of fuzzy-number-valued functions with application to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599. https://doi.org/10.1016/j.fss.2004.08.001
- Bede, B., Rudas, I. J., Bencsik, A. L., First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177 (2007), 1648-1662. https://doi.org/10.1016/j.ins.2006.08.021
- Bede, B., Stefanini, L., Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141. https://doi.org/10.1016/j.fss.2012.10.003
- Bohner, M., Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhaeuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1
- Bohner, M., Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhaeuser, Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9
- Diamond, P., Kloeden, P., Metric spaces of fuzzy sets, Fuzzy Sets and Systems, 35(2) (1990), 241-249. https://doi.org/10.1016/0165-0114(90)90197-E
- Dubois, D., Prade, H., Fuzzy Numbers: An Overview, Readings in Fuzzy Sets for Intelligent Systems, Elsevier, 1993. https://doi.org/10.1016/B978-1-4832-1450-4.50015-8
- Fard, O. S., Bidgoli, T. A., Calculus of fuzzy functions on time scales (I), Soft Computing, 19 (2015), 293-305. https://doi.org/10.1007/s00500-014-1252-6
- Goetschel, R., Voxman, W., Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43. https://doi.org/10.1016/0165-0114(86)90026-6
- Guseinov, G. S., Kaymak¸calan, B., Basics of Riemann delta and nabla integration on time scales, Journal of Difference Equations and Applications, 8(11) (2002), 1001-1017. https://doi.org/10.1080/10236190290015272
- Guseinov, G. S., Integration on time scales, Journal of Mathematical Analysis and Applications, 285(1) (2003), 107-127. https://doi.org/10.1016/S0022-247X(03)00361-5
- Hilger, S., Ein Makettenkalkuls mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universitat Wurzburg, Wurzburg, Germany, 1988.
- Hilger, S., Analysis on measure chains-A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56. https://doi.org/10.1007/BF03323153
- Kaleva, O., Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
- Lakshmikantham, V., Mohapatra, R. N., Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis, Abingdon, UK, 2003. https://doi.org/10.1201/9780203011386
- Lakshmikantham, V., Sivasundaram, S., Kaymak¸calan, B., Dynamic Systems on Measure Chains, Springer Science and Business Media, 370, 2013. https://doi.org/10.1007/978-1-4757-2449-3
- Leelavathi, R., Suresh Kumar, G., Agarwal, R. P., Wang, C., Murty, M. S. N., Generalized nabla differentiability and integrability for fuzzy functions on time scales, Axioms, 9(2) (2020), 65. https://doi.org/10.3390/axioms9020065
- Li, J., Zhao, A., Yan, J., Cauchy problem of fuzzy differential equations under generalized differentiability, Fuzzy Sets and Systems, 200 (2012), 1-24. https://doi.org/10.1016/j.fss.2011.10.009
- Malinowska, A. B., Torres, D. F. M., The diamond-alpha Riemann integral and mean value theorems on time scales, Dynam. Systems Appl., 18(3-4) (2009), 469-482. https://doi.org/10.48550/arXiv.0804.4420
- Mozyrska, D., Torres, D. F. M., A study of diamond-alpha dynamic equations on regular time scales, Afr. Diaspora J. Math (NS), 8(1) (2009), 35-47. https://doi.org/10.48550/arXiv.0902.1380
- Negoita, C., Ralescu, D., Application of Fuzzy Sets to System Analysis, Wiley, New York, 1975. https://doi.org/10.1007/978-3-0348-5921-9
- Nguyen, H. T., A note on the extension principle for fuzzy sets, Journal of Mathematical Analysis and Applications, 64(2) (1978), 369-380. https://doi.org/10.1016/0022-247X(78)90045-8
- Kayar, Z., Kaymakçalan, B., The complementary nabla Bennett-Leindler type inequalities, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(2) (2022), 349-376.
https://doi.org/10.31801/cfsuasmas.930138
- Rogers Jr, J. W., Sheng, Q., Notes on the diamond-α dynamic derivative on time scales, Journal of Mathematical Analysis and Applications, 326(1) (2007), 228-241. https://doi.org/10.1016/j.jmaa.2006.03.004
- Sheng, Q., Fadag, M., Henderson, J., Davis, J. M., An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Analysis: Real World Applications, 7(3) (2006), 395-413.
https://doi.org/10.1016/j.nonrwa.2005.03.008
- Stefanini, L., Bede, B., Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis: Theory, Methods and Applications, 71 (2009), 1311-1328.
https://doi.org/10.1016/j.na.2008.12.005
- Stefanini, L., A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161 (2010), 1564-1584. https://doi.org/10.1016/j.fss.2009.06.009
- Truong, T., Schneider, B., Nguyen Le Toan Nhat, L., Diamond alpha differentiability of interval-valued functions and its applicability to interval differential equations on time scales, Iranian Journal of Fuzzy Systems, 21(1) (2024), 143-158. https://doi.org/10.22111/IJFS.2024.45184.7977
- Vasavi, C. H., Kumar, G. S., Murty, M. S. N., Fuzzy dynamic equations on time scales under generalized delta derivative via contractive-like mapping principles, Indian Journal of Science and Technology, 9(25) (2016), 1-6. https://doi.org/10.17485/ijst/2016/v9i25/85323
- Vasavi, C. H., Kumar, G. S., Murty, M. S. N., Fuzzy Hukuhara delta differential and applications to fuzzy dynamic equations on time scales, Journal of Uncertain Systems, 10(3) (2016), 163-180.
- Vasavi, C. H., Kumar, G. S., Murty, M. S. N., Fuzzy dynamic equations on time scales under second type Hukuhara delta derivative, International Journal of Chemical Sciences, 14(1) (2016), 49-66.
- Vasavi, C. H., Kumar, G. S., Murty, M. S. N., Generalized differentiability and integrability for fuzzy set-valued functions on time scales, Soft Computing, 20(3) (2016), 1093-1104. https://doi.org/10.1007/s00500-014-1569-1
- Zadeh, L.A., Fuzzy sets, Information and Control, 8 (1965), 338-353.
Year 2025,
Volume: 74 Issue: 1, 103 - 116
Selami Bayeğ
,
Raziye Mert
References
- Agarwal, R. P., Bohner, M., Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3-22. https://doi.org/10.1007/BF03322019
- Anderson, D., Bullock, J., Erbe, L., Peterson, A., Tran, H., Nabla Dynamic Equations, In Advances in Dynamic Equations on Time Scales, Birkhaeuser, Boston, MA, 2003, 47-83. https://doi.org/10.1007/978-0-8176-8230-9 3
- Bede, B., Gal, S. G., Generalizations of the differentiability of fuzzy-number-valued functions with application to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599. https://doi.org/10.1016/j.fss.2004.08.001
- Bede, B., Rudas, I. J., Bencsik, A. L., First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177 (2007), 1648-1662. https://doi.org/10.1016/j.ins.2006.08.021
- Bede, B., Stefanini, L., Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141. https://doi.org/10.1016/j.fss.2012.10.003
- Bohner, M., Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhaeuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1
- Bohner, M., Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhaeuser, Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9
- Diamond, P., Kloeden, P., Metric spaces of fuzzy sets, Fuzzy Sets and Systems, 35(2) (1990), 241-249. https://doi.org/10.1016/0165-0114(90)90197-E
- Dubois, D., Prade, H., Fuzzy Numbers: An Overview, Readings in Fuzzy Sets for Intelligent Systems, Elsevier, 1993. https://doi.org/10.1016/B978-1-4832-1450-4.50015-8
- Fard, O. S., Bidgoli, T. A., Calculus of fuzzy functions on time scales (I), Soft Computing, 19 (2015), 293-305. https://doi.org/10.1007/s00500-014-1252-6
- Goetschel, R., Voxman, W., Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43. https://doi.org/10.1016/0165-0114(86)90026-6
- Guseinov, G. S., Kaymak¸calan, B., Basics of Riemann delta and nabla integration on time scales, Journal of Difference Equations and Applications, 8(11) (2002), 1001-1017. https://doi.org/10.1080/10236190290015272
- Guseinov, G. S., Integration on time scales, Journal of Mathematical Analysis and Applications, 285(1) (2003), 107-127. https://doi.org/10.1016/S0022-247X(03)00361-5
- Hilger, S., Ein Makettenkalkuls mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universitat Wurzburg, Wurzburg, Germany, 1988.
- Hilger, S., Analysis on measure chains-A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56. https://doi.org/10.1007/BF03323153
- Kaleva, O., Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
- Lakshmikantham, V., Mohapatra, R. N., Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis, Abingdon, UK, 2003. https://doi.org/10.1201/9780203011386
- Lakshmikantham, V., Sivasundaram, S., Kaymak¸calan, B., Dynamic Systems on Measure Chains, Springer Science and Business Media, 370, 2013. https://doi.org/10.1007/978-1-4757-2449-3
- Leelavathi, R., Suresh Kumar, G., Agarwal, R. P., Wang, C., Murty, M. S. N., Generalized nabla differentiability and integrability for fuzzy functions on time scales, Axioms, 9(2) (2020), 65. https://doi.org/10.3390/axioms9020065
- Li, J., Zhao, A., Yan, J., Cauchy problem of fuzzy differential equations under generalized differentiability, Fuzzy Sets and Systems, 200 (2012), 1-24. https://doi.org/10.1016/j.fss.2011.10.009
- Malinowska, A. B., Torres, D. F. M., The diamond-alpha Riemann integral and mean value theorems on time scales, Dynam. Systems Appl., 18(3-4) (2009), 469-482. https://doi.org/10.48550/arXiv.0804.4420
- Mozyrska, D., Torres, D. F. M., A study of diamond-alpha dynamic equations on regular time scales, Afr. Diaspora J. Math (NS), 8(1) (2009), 35-47. https://doi.org/10.48550/arXiv.0902.1380
- Negoita, C., Ralescu, D., Application of Fuzzy Sets to System Analysis, Wiley, New York, 1975. https://doi.org/10.1007/978-3-0348-5921-9
- Nguyen, H. T., A note on the extension principle for fuzzy sets, Journal of Mathematical Analysis and Applications, 64(2) (1978), 369-380. https://doi.org/10.1016/0022-247X(78)90045-8
- Kayar, Z., Kaymakçalan, B., The complementary nabla Bennett-Leindler type inequalities, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(2) (2022), 349-376.
https://doi.org/10.31801/cfsuasmas.930138
- Rogers Jr, J. W., Sheng, Q., Notes on the diamond-α dynamic derivative on time scales, Journal of Mathematical Analysis and Applications, 326(1) (2007), 228-241. https://doi.org/10.1016/j.jmaa.2006.03.004
- Sheng, Q., Fadag, M., Henderson, J., Davis, J. M., An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Analysis: Real World Applications, 7(3) (2006), 395-413.
https://doi.org/10.1016/j.nonrwa.2005.03.008
- Stefanini, L., Bede, B., Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis: Theory, Methods and Applications, 71 (2009), 1311-1328.
https://doi.org/10.1016/j.na.2008.12.005
- Stefanini, L., A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161 (2010), 1564-1584. https://doi.org/10.1016/j.fss.2009.06.009
- Truong, T., Schneider, B., Nguyen Le Toan Nhat, L., Diamond alpha differentiability of interval-valued functions and its applicability to interval differential equations on time scales, Iranian Journal of Fuzzy Systems, 21(1) (2024), 143-158. https://doi.org/10.22111/IJFS.2024.45184.7977
- Vasavi, C. H., Kumar, G. S., Murty, M. S. N., Fuzzy dynamic equations on time scales under generalized delta derivative via contractive-like mapping principles, Indian Journal of Science and Technology, 9(25) (2016), 1-6. https://doi.org/10.17485/ijst/2016/v9i25/85323
- Vasavi, C. H., Kumar, G. S., Murty, M. S. N., Fuzzy Hukuhara delta differential and applications to fuzzy dynamic equations on time scales, Journal of Uncertain Systems, 10(3) (2016), 163-180.
- Vasavi, C. H., Kumar, G. S., Murty, M. S. N., Fuzzy dynamic equations on time scales under second type Hukuhara delta derivative, International Journal of Chemical Sciences, 14(1) (2016), 49-66.
- Vasavi, C. H., Kumar, G. S., Murty, M. S. N., Generalized differentiability and integrability for fuzzy set-valued functions on time scales, Soft Computing, 20(3) (2016), 1093-1104. https://doi.org/10.1007/s00500-014-1569-1
- Zadeh, L.A., Fuzzy sets, Information and Control, 8 (1965), 338-353.