Research Article
BibTex RIS Cite

Regular conformable fractional Dirac systems with impulsive boundary conditions

Year 2025, Volume: 74 Issue: 2, 228 - 237, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1486907

Abstract

The regular impulsive conformable fractional Dirac system is discussed in this study. First, the uniqueness and existence of solutions for certain kinds of systems are examined. Next, the fundamental features of the operator corresponding to these systems are found and its symmetry is shown. In the end, Green’s function for this problem is determined, and its fundamental characteristics are provided.

References

  • Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. https://doi.org/ 10.1016/j.cam.2014.10.016.
  • Ali, A., Shah, K., Abdeljawad, T., Mahariq, I., Rashdan, M., Mathematical analysis of nonlinear integral boundary value problem of proportional delay implicit fractional differential equations with impulsive conditions, Bound. Value Probl., 2021(7) (2021). https://doi.org/10.1186/s13661-021-01484-y.
  • Ali, A., Gupta, V., Abdeljawad, T., Shah, K., Jarad, F., Mathematical analysis of nonlocal implicit impulsive problem under Caputo fractional boundary conditions, Math. Probl. Engineer., 2020 (2020), 7681479, 1-16. https://doi.org/10.1155/2020/7681479.
  • Ali, A., Ansari, K. J., Alrabaiah, H., Aloqaily, A., Mlaiki, N., Coupled System of Fractional Impulsive Problem Involving Power-Law Kernel with Piecewise Order, Fractal Fract., 7 (2023), 436. https://doi.org/10.3390/fractalfract7060436.
  • Allahverdiev, B. P., Tuna, H., One-dimensional conformable fractional Dirac system, Bol. Soc. Mat. Mex., 26(1) (2020), 121-146. https://doi.org/10.1007/s40590-019-00235-5.
  • Allahverdiev, B. P., Tuna, H., Titchmarsh–Weyl theory for Dirac systems with transmission conditions, Mediterr. J. Math., 15(151) (2018), 1-12. https://doi.org/10.1007/s00009-018-1197-6.
  • Allahverdiev, B. P., Tuna, H., Spectral expansion for the singular Dirac system with impulsive conditions, Turkish J. Math., 42 (2018), 2527-2545. https://doi.org/10.3906/mat-1803-79.
  • Amirov, R. K., Ozkan, A. S., Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary condition, Math. Phys. Anal. Geom., 17(3-4) (2014), 483-491. https://doi.org/10.1007/s11040-014-9166-1.
  • Aydemir, K., Ol˘gar, H., Mukhtarov, O. S., The principal eigenvalue and the principal eigenfunction of a boundaryvalue-transmission problem, Turkish J. Math. Comput. Sci., 11(2) (2019), 97-100.
  • Aydemir, K., Olgar, H., Mukhtarov, O. S., Muhtarov, F., Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 32(3) (2018), 921-931. https://doi.org/10.2298/FIL1803921A.
  • Aygar, Y., Bairamov, E., Scattering theory of impulsive Sturm–Liouville equation in quantum calculus, Bull. Malays. Math. Sci. Soc., 42 (2019), 3247-3259. https://doi.org/10.1007/s40840-018-0657-2.
  • Bohner, M., Cebesoy, S., Spectral analysis of an impulsive quantum difference operator, Math. Meth. Appl. Sci., 42(16) (2019), 5331-5339. https://doi.org/10.1002/mma.5348.
  • Göktaş, S., Kemaloğlu, H., Yılmaz, E., Multiplicative conformable fractional Dirac system, Turkish J. Math., 46(3) (2022), 973-990. https://doi.org/10.55730/1300-0098.3136.
  • Karahan, D., Mamedov, K. R., On a q-analogue of the Sturm–Liouville operator with discontinuity conditions, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk., 26(3) (2022), 407-418. https://doi.org/10.14498/vsgtu1934.
  • Karahan, D., Mamedov, K. R., Sampling theory associated with q-Sturm–Liouville operator with discontinuity conditions, J. Contemp. Appl. Math., 10(2) (2020), 40-48.
  • Keskin, B., Inverse problems for one dimensional conformable fractional Dirac type integro differential system, Inverse Problems, 36(6) (2020), 065001. https://doi.org/10.1088/1361-6420/ab7e03.
  • Khalil, R.,Horani, M. A., Yousef A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002.
  • Koyunbakan, H., Panakhov, E. S., Solution of a discontinuous inverse nodal problem on a finite interval, Math. Comput. Model., 44(1-2) (2006), 204-209. https://doi.org/10.1016/j.mcm.2006.01.012.
  • Levitan, B. M., Sargsjan, I. S., Sturm–Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991.
  • Ozkan, A. S., Amirov, R. K., An interior inverse problem for the impulsive Dirac operator, Tamkang J. Math., 42(3) (2011), 259-263. https://doi.org/10.5556/j.tkjm.42.2011.824.
  • Panakhov, E. S., Ercan, A., Fundamental spectral approach for a Dirac system having transmission conditions in terms of conformable derivative, The 8th International Conference on Control and Optimization with Industrial Applications (COIA-2022), 2022.
  • Shah, K., Abdeljawad, T., Ali, A., Alqudah, M. A., Investigation of integral boundary value problem with impulsive behavior involving non-singular derivative, Fractals, 30(8) (2022), 1-15, 2240204. https://doi.org/10.1142/ S0218348X22402046.
  • Shah, K., Mlaiki, N., Abdeljawad, T., Ali, A., Using the measure of noncompactness to study a nonlinear impulsive Cauchy problem with two different kinds of delay, Fractals, 30(8) (2022), 1-14, Article ID 2240218. https://doi.org/10.1142/S0218348X22402186.
  • Thaller, B., The Dirac Equation, Springer, 1992.
  • Tunç, E., Muhtarov, O. S., Fundamental solutions and eigenvalues of one boundary-value problem with transmission conditions, Appl. Math. Comput., 157(2) (2004), 347-355. https://doi.org/10.1016/j.amc.2003.08.039.
  • Wang, Y. P., Koyunbakan, H., On the Hochstadt–Lieberman theorem for discontinuous boundary-valued problems, Acta Math. Sin., Engl. Ser., 30(6) (2014), 985-992. https://doi.org/10.1007/s10114-014-3221-5.
  • Wang, Y., Zhou, J., Li, Y., Fractional Sobolev’s space on time scale via comformable fractional calculus and their application to a fractional differential equation on time scale, Adv. Math. Physics, (2016), 1-16, Art. ID 963491. https://doi.org/10.1155/2016/9636491.
  • Weidmann, J., Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, 1258, Springer, Berlin, 1987.
Year 2025, Volume: 74 Issue: 2, 228 - 237, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1486907

Abstract

References

  • Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. https://doi.org/ 10.1016/j.cam.2014.10.016.
  • Ali, A., Shah, K., Abdeljawad, T., Mahariq, I., Rashdan, M., Mathematical analysis of nonlinear integral boundary value problem of proportional delay implicit fractional differential equations with impulsive conditions, Bound. Value Probl., 2021(7) (2021). https://doi.org/10.1186/s13661-021-01484-y.
  • Ali, A., Gupta, V., Abdeljawad, T., Shah, K., Jarad, F., Mathematical analysis of nonlocal implicit impulsive problem under Caputo fractional boundary conditions, Math. Probl. Engineer., 2020 (2020), 7681479, 1-16. https://doi.org/10.1155/2020/7681479.
  • Ali, A., Ansari, K. J., Alrabaiah, H., Aloqaily, A., Mlaiki, N., Coupled System of Fractional Impulsive Problem Involving Power-Law Kernel with Piecewise Order, Fractal Fract., 7 (2023), 436. https://doi.org/10.3390/fractalfract7060436.
  • Allahverdiev, B. P., Tuna, H., One-dimensional conformable fractional Dirac system, Bol. Soc. Mat. Mex., 26(1) (2020), 121-146. https://doi.org/10.1007/s40590-019-00235-5.
  • Allahverdiev, B. P., Tuna, H., Titchmarsh–Weyl theory for Dirac systems with transmission conditions, Mediterr. J. Math., 15(151) (2018), 1-12. https://doi.org/10.1007/s00009-018-1197-6.
  • Allahverdiev, B. P., Tuna, H., Spectral expansion for the singular Dirac system with impulsive conditions, Turkish J. Math., 42 (2018), 2527-2545. https://doi.org/10.3906/mat-1803-79.
  • Amirov, R. K., Ozkan, A. S., Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary condition, Math. Phys. Anal. Geom., 17(3-4) (2014), 483-491. https://doi.org/10.1007/s11040-014-9166-1.
  • Aydemir, K., Ol˘gar, H., Mukhtarov, O. S., The principal eigenvalue and the principal eigenfunction of a boundaryvalue-transmission problem, Turkish J. Math. Comput. Sci., 11(2) (2019), 97-100.
  • Aydemir, K., Olgar, H., Mukhtarov, O. S., Muhtarov, F., Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 32(3) (2018), 921-931. https://doi.org/10.2298/FIL1803921A.
  • Aygar, Y., Bairamov, E., Scattering theory of impulsive Sturm–Liouville equation in quantum calculus, Bull. Malays. Math. Sci. Soc., 42 (2019), 3247-3259. https://doi.org/10.1007/s40840-018-0657-2.
  • Bohner, M., Cebesoy, S., Spectral analysis of an impulsive quantum difference operator, Math. Meth. Appl. Sci., 42(16) (2019), 5331-5339. https://doi.org/10.1002/mma.5348.
  • Göktaş, S., Kemaloğlu, H., Yılmaz, E., Multiplicative conformable fractional Dirac system, Turkish J. Math., 46(3) (2022), 973-990. https://doi.org/10.55730/1300-0098.3136.
  • Karahan, D., Mamedov, K. R., On a q-analogue of the Sturm–Liouville operator with discontinuity conditions, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk., 26(3) (2022), 407-418. https://doi.org/10.14498/vsgtu1934.
  • Karahan, D., Mamedov, K. R., Sampling theory associated with q-Sturm–Liouville operator with discontinuity conditions, J. Contemp. Appl. Math., 10(2) (2020), 40-48.
  • Keskin, B., Inverse problems for one dimensional conformable fractional Dirac type integro differential system, Inverse Problems, 36(6) (2020), 065001. https://doi.org/10.1088/1361-6420/ab7e03.
  • Khalil, R.,Horani, M. A., Yousef A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002.
  • Koyunbakan, H., Panakhov, E. S., Solution of a discontinuous inverse nodal problem on a finite interval, Math. Comput. Model., 44(1-2) (2006), 204-209. https://doi.org/10.1016/j.mcm.2006.01.012.
  • Levitan, B. M., Sargsjan, I. S., Sturm–Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991.
  • Ozkan, A. S., Amirov, R. K., An interior inverse problem for the impulsive Dirac operator, Tamkang J. Math., 42(3) (2011), 259-263. https://doi.org/10.5556/j.tkjm.42.2011.824.
  • Panakhov, E. S., Ercan, A., Fundamental spectral approach for a Dirac system having transmission conditions in terms of conformable derivative, The 8th International Conference on Control and Optimization with Industrial Applications (COIA-2022), 2022.
  • Shah, K., Abdeljawad, T., Ali, A., Alqudah, M. A., Investigation of integral boundary value problem with impulsive behavior involving non-singular derivative, Fractals, 30(8) (2022), 1-15, 2240204. https://doi.org/10.1142/ S0218348X22402046.
  • Shah, K., Mlaiki, N., Abdeljawad, T., Ali, A., Using the measure of noncompactness to study a nonlinear impulsive Cauchy problem with two different kinds of delay, Fractals, 30(8) (2022), 1-14, Article ID 2240218. https://doi.org/10.1142/S0218348X22402186.
  • Thaller, B., The Dirac Equation, Springer, 1992.
  • Tunç, E., Muhtarov, O. S., Fundamental solutions and eigenvalues of one boundary-value problem with transmission conditions, Appl. Math. Comput., 157(2) (2004), 347-355. https://doi.org/10.1016/j.amc.2003.08.039.
  • Wang, Y. P., Koyunbakan, H., On the Hochstadt–Lieberman theorem for discontinuous boundary-valued problems, Acta Math. Sin., Engl. Ser., 30(6) (2014), 985-992. https://doi.org/10.1007/s10114-014-3221-5.
  • Wang, Y., Zhou, J., Li, Y., Fractional Sobolev’s space on time scale via comformable fractional calculus and their application to a fractional differential equation on time scale, Adv. Math. Physics, (2016), 1-16, Art. ID 963491. https://doi.org/10.1155/2016/9636491.
  • Weidmann, J., Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, 1258, Springer, Berlin, 1987.
There are 28 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Research Articles
Authors

Bilender Paşaoğlu Allahverdiev 0000-0002-9315-4652

Hüseyin Tuna 0000-0001-7240-8687

Publication Date June 19, 2025
Submission Date May 20, 2024
Acceptance Date February 18, 2025
Published in Issue Year 2025 Volume: 74 Issue: 2

Cite

APA Paşaoğlu Allahverdiev, B., & Tuna, H. (2025). Regular conformable fractional Dirac systems with impulsive boundary conditions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(2), 228-237. https://doi.org/10.31801/cfsuasmas.1486907
AMA Paşaoğlu Allahverdiev B, Tuna H. Regular conformable fractional Dirac systems with impulsive boundary conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2025;74(2):228-237. doi:10.31801/cfsuasmas.1486907
Chicago Paşaoğlu Allahverdiev, Bilender, and Hüseyin Tuna. “Regular Conformable Fractional Dirac Systems With Impulsive Boundary Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 2 (June 2025): 228-37. https://doi.org/10.31801/cfsuasmas.1486907.
EndNote Paşaoğlu Allahverdiev B, Tuna H (June 1, 2025) Regular conformable fractional Dirac systems with impulsive boundary conditions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 2 228–237.
IEEE B. Paşaoğlu Allahverdiev and H. Tuna, “Regular conformable fractional Dirac systems with impulsive boundary conditions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 2, pp. 228–237, 2025, doi: 10.31801/cfsuasmas.1486907.
ISNAD Paşaoğlu Allahverdiev, Bilender - Tuna, Hüseyin. “Regular Conformable Fractional Dirac Systems With Impulsive Boundary Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/2 (June 2025), 228-237. https://doi.org/10.31801/cfsuasmas.1486907.
JAMA Paşaoğlu Allahverdiev B, Tuna H. Regular conformable fractional Dirac systems with impulsive boundary conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:228–237.
MLA Paşaoğlu Allahverdiev, Bilender and Hüseyin Tuna. “Regular Conformable Fractional Dirac Systems With Impulsive Boundary Conditions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 2, 2025, pp. 228-37, doi:10.31801/cfsuasmas.1486907.
Vancouver Paşaoğlu Allahverdiev B, Tuna H. Regular conformable fractional Dirac systems with impulsive boundary conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(2):228-37.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.