On generalized difference $\mathscr{I}$-convergent sequences in neutrosophic $n$-normed linear spaces
Year 2025,
Volume: 74 Issue: 2, 277 - 293, 19.06.2025
Nesar Hossain
,
Syed Abdul Mohiuddine
Abstract
In this article, we delve into the intricate concepts of $\Delta^m\mathscr{I}$-convergence and $\Delta^m\mathscr{I}$-Cauchy sequences within neutrosophic $n$-normed linear spaces, unveiling several intriguing properties. Our findings establish that every neutrosophic $n$-normed linear space is $\Delta^m\mathscr{I}$-complete. We also thoroughly investigate the $\Delta^m\mathscr{I}$-limit and $\Delta^m\mathscr{I}$-cluster points of sequences in relation to the neutrosophic $n$-norm, proving that the set of all $\Delta^m\mathscr{I}$-cluster points forms a closed set under the topology induced by the neutrosophic $n$-norm. Additionally, we demonstrate that a linear operator preserves $\Delta^m\mathscr{I}$-convergence if and only if it remains continuous with respect to the neutrosophic $n$-norm.
Ethical Statement
Not applicable
Project Number
Not applicable
References
- Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3.
- Esi, A., Hazarika, B., $\lambda$-ideal convergence in intuitionistic fuzzy $2$-normed linear space, J. Intell. Fuzzy Syst., 24(4) (2013), 725–732. https://doi.org/10.3233/IFS-2012-0592.
- Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow J. Math., 21(4) (1995), 377–386.
- Et, M., Nuray, F., $\Delta^m$-statistical convergence, Indian J. Pure Appl. Math., 32(6) (2001), 961–969.
- Fast, H., Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241–244.
- Felbin, C., Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst., 48(2) (1992), 239–248.
- Gähler, S., Lineare $2$-normietre räume, Math. Nachr., 28 (1965), 1–43.
- Gähler, S., Untersuchungen uber verallgemeinerte $m$-metrische räume, I, II, III, Math. Nachr., 40 (1969), 165–189.
- Gok Gumus, H., Nuray, F., $\Delta^m$-ideal convergence, Selçuk J. Appl. Math., 12(2) (2011), 101–110.
- Gunawan, H., Mashadi, M., On $n$-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631–639. http://dx.doi.org/10.1155/S0161171201010675.
- Gürdal, M., Şahiner, A., A¸cık, I., Approximation theory in $2$-Banach spaces, Nonlinear Anal., 71(5-6) (2009), 1654–1661. https://doi.org/10.1016/j.na.2009.01.030.
- Gürdal, M., Yamancı, U., Statistical convergence and some questions of operator theory, Dynam. Syst. Appl., 24(3) (2015), 305–311.
- Hazarika, B., On generalized difference ideal convergence in random $2$-normed spaces, Filomat, 26(6) (2012), 1273–1282. http://dx.doi.org/10.2298/FIL1206273H.
- Hossain, N., Rough $\mathscr{I}$-convergence of sequences in $2$-normed spaces, J. Inequal. Spec. Funct., 14(3) (2023), 17–25. https://doi.org/10.54379/jiasf-2023-3-3.
- Hossain, N., $\mathscr{I}$-convergence of double sequences in neutrosophic $2$-normed spaces, Honam Math. J., 46(3) (2024), 378–392. https://doi.org/10.5831/HMJ.2024.46.3.378.
- Hossain, N., Kişi, Ö., Statistical convergence of sequences in neutrosophic $n$-normed linear spaces (Submitted).
- Kamber, E., Intuitionistic fuzzy $\mathscr{I}$-convergent difference sequence spaces defined by compact operator, Facta Univ. Ser. Math. Inform., 37(3) (2022), 485–494. https://doi.org/10.22190/FUMI200810033K.
- Karakus, S., Demirci K., Duman, O., Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35(4) (2008), 763–769. https://doi.org/10.1016/j.chaos.2006.05.046.
- Khan, V. A., Khan, I. A., Ahmad, M., A new type of difference $\mathscr{I}$-convergent sequences in IFnNS, Yugoslav J. Oper. Res., 33(1) (2021), 1–15. https://doi.org/10.2298/YJOR210318022K.
- Kim, S. S., Cho, Y. J., Strict convexity in linear $n$-normed spaces, Demonst. Math., 29 (1996), 739–744.
- Kirişci, M., Şimşek, N., Neutrosophic normed spaces and statistical convergence, J. Anal., 28 (2020), 1059–1073. https://doi.org/10.1007/s41478-020-00234-0.
- Kişi, Ö. Gürdal, M., Çakal, B., Certain aspects of Nörlund $\mathscr{I}$-statistical convergence of sequences in neutrosophic normed spaces, Demonstr. Math., 56 (2023), 20220194. http://dx.doi.org/10.1515/dema-2022-0194.
- Kizmaz, H., On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-–176.
- Klement, E. P., Mesiar, R., Pap, E., Triangular norms. Position paper I: basic analytical and algebraic properties, Fuzzy Sets and Systems, 143 (2004), 5–26. https://doi.org/10.1016/j.fss.2003.06.007.
- Kostyrko, P., Šalát, T., Wilczyński, W., $\mathscr{I}$-convergence, Real Anal. Exchange, 26(2) (2000/01), 669–685. Fractals, 35(4) (2008), 763–769. https://doi.org/10.1016/j.chaos.2006.05.046.
- Kumar, V., Kumar, K., On ideal convergence of sequences in intuitionistic fuzzy normed spaces, Selçuk J. Appl. Math., 10(2) (2009), 27–41.
- Kumar, V., Sharma, A., Murtaza, S., On neutrosophic $n$-normed linear spaces, Neutrosophic Sets Syst., 61(1) (2023), Article 16. https://fs.unm.edu/nss8/index.php/111/article/view/3793.
- LiXin, C., Chen, L. G., Yi, L. Y., Hui, L., Measure theory of statistical convergence, Science in China Series A: Mathematics, 51(12) (2008), 2285–2303. http://dx.doi.org/10.1007/s11425-008-0017-z
- Maio, G. D., Kočinac, L. D. R., Statistical convergence in topology, Topol. Appl., 156 (2008), 28–45. https://doi.org/10.1016/j.topol.2008.01.015.
- Malceski, R., Strong $n$-convex $n$-normed spaces, Mat. Bilt., 21 (1997), 81-–102.
- Malkowsky, E., Mursaleen, M., Suantai, S., The dual spaces of sets of difference sequences of order $m$ and matrix transformations, Acta Math. Sinica, 23 (2007), 521-532. https://doi.org/10.1007/s10114-005-0719-x.
- Misiak, A., $n$-inner product spaces, Math. Nachr., 140 (1989), 299-–319.
- Mohiuddine, S. A., Hazarika, B., Some classes of ideal convergent sequences and generalized difference matrix operator, Filomat, 31(6) (2017), 1827–1834. http://dx.doi.org/10.2298/FIL1706827M.
- Mohiuddine, S. A., Asiri, A., Hazarika, B., Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst., 48(5) (2019), 492–506. http://dx.doi.org/10.1080/03081079.2019.1608985.
- Mohiuddine, S. A., Hazarika, B., Alghamdi, M. A., Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33(14) (2019), 4549–4560. http://dx.doi.org/10.2298/FIL1914549M.
- Mursaleen, M., Alotaibi, A., On $\mathscr{I}$-convergence in random $2$-normed spaces, Math. Slovaca, 61(6) (2011), 933–940. https://doi.org/10.2478/s12175-011-0059-5.
- Mursaleen, M., S. A. Mohiuddine, S. A., On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012), 49–62. http://dx.doi.org/10.2478/s12175-011-0071-9.
- Murtaza, S., Sharma, A., Kumar, V., Neutrosophic $2$-normed spaces and generalized summability, Neutrosophic Sets Syst., 55(1) (2023), Article 25.
- Nabiev, A. A., Savaş, E., Gürdal, M., Statistically localized sequences in metric spaces, J. Appl. Anal. Comput., 9(2) (2019), 739–746. https://doi.org/10.11948/2156-907X.20180157.
- Saadati, R., Park, J. H., On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27(2) (2006), 331–344. https://doi.org/10.1016/j.chaos.2005.03.019.
- Savaş, E., Gürdal, M., $\mathscr{I}$-statistical convergence in probabilistic normed spaces, U.P.B. Sci. Bull., Series A, 77(4) (2015), 195–204.
- Savaş, E., Gürdal, M., Ideal convergent function sequences in random $2$-normed spaces, Filomat, 30(3) (2016), 557–567. http://dx.doi.org/10.2298/FIL1603557S.
- Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(5) (1959), 361–375.
- Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math., 10(1) (1960), 313–334.
- Smarandache, F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure. Appl. Math., 24 (2005), 287-–297.
- Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73–74.
- Şahiner, A., Gürdal, M., Yiğit, T., Ideal convergence characterization of the completion of linear $n$-normed spaces, Comput. Math. Appl., 61(3) (2011), 683–689. https://doi.org/10.1016/j.camwa.2010.12.015
- Şençimen, C., Statistical convergence in probability for a sequence of random functions, J. Theor. Probab., 26 (2013), 94–106. https://doi.org/10.1007/s10959-011-0346-7.
- Ünver, M., Orhan, C., Statistical convergence with respect to power series methods and applications to approximation theory, Numer. Funct. Anal. Optim., 40(5) (2019), 535–547. https://doi.org/10.1080/01630563.2018.1561467.
- Yamancı, U., Gürdal, M., Statistical convergence and operators on Fock space, New York J. Math., 22 (2016), 199–207.
- Zadeh, L. A., Fuzzy sets, Inform. control, 8 (1965), 338–353.
Year 2025,
Volume: 74 Issue: 2, 277 - 293, 19.06.2025
Nesar Hossain
,
Syed Abdul Mohiuddine
Project Number
Not applicable
References
- Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3.
- Esi, A., Hazarika, B., $\lambda$-ideal convergence in intuitionistic fuzzy $2$-normed linear space, J. Intell. Fuzzy Syst., 24(4) (2013), 725–732. https://doi.org/10.3233/IFS-2012-0592.
- Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow J. Math., 21(4) (1995), 377–386.
- Et, M., Nuray, F., $\Delta^m$-statistical convergence, Indian J. Pure Appl. Math., 32(6) (2001), 961–969.
- Fast, H., Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241–244.
- Felbin, C., Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst., 48(2) (1992), 239–248.
- Gähler, S., Lineare $2$-normietre räume, Math. Nachr., 28 (1965), 1–43.
- Gähler, S., Untersuchungen uber verallgemeinerte $m$-metrische räume, I, II, III, Math. Nachr., 40 (1969), 165–189.
- Gok Gumus, H., Nuray, F., $\Delta^m$-ideal convergence, Selçuk J. Appl. Math., 12(2) (2011), 101–110.
- Gunawan, H., Mashadi, M., On $n$-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631–639. http://dx.doi.org/10.1155/S0161171201010675.
- Gürdal, M., Şahiner, A., A¸cık, I., Approximation theory in $2$-Banach spaces, Nonlinear Anal., 71(5-6) (2009), 1654–1661. https://doi.org/10.1016/j.na.2009.01.030.
- Gürdal, M., Yamancı, U., Statistical convergence and some questions of operator theory, Dynam. Syst. Appl., 24(3) (2015), 305–311.
- Hazarika, B., On generalized difference ideal convergence in random $2$-normed spaces, Filomat, 26(6) (2012), 1273–1282. http://dx.doi.org/10.2298/FIL1206273H.
- Hossain, N., Rough $\mathscr{I}$-convergence of sequences in $2$-normed spaces, J. Inequal. Spec. Funct., 14(3) (2023), 17–25. https://doi.org/10.54379/jiasf-2023-3-3.
- Hossain, N., $\mathscr{I}$-convergence of double sequences in neutrosophic $2$-normed spaces, Honam Math. J., 46(3) (2024), 378–392. https://doi.org/10.5831/HMJ.2024.46.3.378.
- Hossain, N., Kişi, Ö., Statistical convergence of sequences in neutrosophic $n$-normed linear spaces (Submitted).
- Kamber, E., Intuitionistic fuzzy $\mathscr{I}$-convergent difference sequence spaces defined by compact operator, Facta Univ. Ser. Math. Inform., 37(3) (2022), 485–494. https://doi.org/10.22190/FUMI200810033K.
- Karakus, S., Demirci K., Duman, O., Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35(4) (2008), 763–769. https://doi.org/10.1016/j.chaos.2006.05.046.
- Khan, V. A., Khan, I. A., Ahmad, M., A new type of difference $\mathscr{I}$-convergent sequences in IFnNS, Yugoslav J. Oper. Res., 33(1) (2021), 1–15. https://doi.org/10.2298/YJOR210318022K.
- Kim, S. S., Cho, Y. J., Strict convexity in linear $n$-normed spaces, Demonst. Math., 29 (1996), 739–744.
- Kirişci, M., Şimşek, N., Neutrosophic normed spaces and statistical convergence, J. Anal., 28 (2020), 1059–1073. https://doi.org/10.1007/s41478-020-00234-0.
- Kişi, Ö. Gürdal, M., Çakal, B., Certain aspects of Nörlund $\mathscr{I}$-statistical convergence of sequences in neutrosophic normed spaces, Demonstr. Math., 56 (2023), 20220194. http://dx.doi.org/10.1515/dema-2022-0194.
- Kizmaz, H., On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-–176.
- Klement, E. P., Mesiar, R., Pap, E., Triangular norms. Position paper I: basic analytical and algebraic properties, Fuzzy Sets and Systems, 143 (2004), 5–26. https://doi.org/10.1016/j.fss.2003.06.007.
- Kostyrko, P., Šalát, T., Wilczyński, W., $\mathscr{I}$-convergence, Real Anal. Exchange, 26(2) (2000/01), 669–685. Fractals, 35(4) (2008), 763–769. https://doi.org/10.1016/j.chaos.2006.05.046.
- Kumar, V., Kumar, K., On ideal convergence of sequences in intuitionistic fuzzy normed spaces, Selçuk J. Appl. Math., 10(2) (2009), 27–41.
- Kumar, V., Sharma, A., Murtaza, S., On neutrosophic $n$-normed linear spaces, Neutrosophic Sets Syst., 61(1) (2023), Article 16. https://fs.unm.edu/nss8/index.php/111/article/view/3793.
- LiXin, C., Chen, L. G., Yi, L. Y., Hui, L., Measure theory of statistical convergence, Science in China Series A: Mathematics, 51(12) (2008), 2285–2303. http://dx.doi.org/10.1007/s11425-008-0017-z
- Maio, G. D., Kočinac, L. D. R., Statistical convergence in topology, Topol. Appl., 156 (2008), 28–45. https://doi.org/10.1016/j.topol.2008.01.015.
- Malceski, R., Strong $n$-convex $n$-normed spaces, Mat. Bilt., 21 (1997), 81-–102.
- Malkowsky, E., Mursaleen, M., Suantai, S., The dual spaces of sets of difference sequences of order $m$ and matrix transformations, Acta Math. Sinica, 23 (2007), 521-532. https://doi.org/10.1007/s10114-005-0719-x.
- Misiak, A., $n$-inner product spaces, Math. Nachr., 140 (1989), 299-–319.
- Mohiuddine, S. A., Hazarika, B., Some classes of ideal convergent sequences and generalized difference matrix operator, Filomat, 31(6) (2017), 1827–1834. http://dx.doi.org/10.2298/FIL1706827M.
- Mohiuddine, S. A., Asiri, A., Hazarika, B., Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst., 48(5) (2019), 492–506. http://dx.doi.org/10.1080/03081079.2019.1608985.
- Mohiuddine, S. A., Hazarika, B., Alghamdi, M. A., Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33(14) (2019), 4549–4560. http://dx.doi.org/10.2298/FIL1914549M.
- Mursaleen, M., Alotaibi, A., On $\mathscr{I}$-convergence in random $2$-normed spaces, Math. Slovaca, 61(6) (2011), 933–940. https://doi.org/10.2478/s12175-011-0059-5.
- Mursaleen, M., S. A. Mohiuddine, S. A., On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(1) (2012), 49–62. http://dx.doi.org/10.2478/s12175-011-0071-9.
- Murtaza, S., Sharma, A., Kumar, V., Neutrosophic $2$-normed spaces and generalized summability, Neutrosophic Sets Syst., 55(1) (2023), Article 25.
- Nabiev, A. A., Savaş, E., Gürdal, M., Statistically localized sequences in metric spaces, J. Appl. Anal. Comput., 9(2) (2019), 739–746. https://doi.org/10.11948/2156-907X.20180157.
- Saadati, R., Park, J. H., On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27(2) (2006), 331–344. https://doi.org/10.1016/j.chaos.2005.03.019.
- Savaş, E., Gürdal, M., $\mathscr{I}$-statistical convergence in probabilistic normed spaces, U.P.B. Sci. Bull., Series A, 77(4) (2015), 195–204.
- Savaş, E., Gürdal, M., Ideal convergent function sequences in random $2$-normed spaces, Filomat, 30(3) (2016), 557–567. http://dx.doi.org/10.2298/FIL1603557S.
- Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(5) (1959), 361–375.
- Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math., 10(1) (1960), 313–334.
- Smarandache, F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure. Appl. Math., 24 (2005), 287-–297.
- Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73–74.
- Şahiner, A., Gürdal, M., Yiğit, T., Ideal convergence characterization of the completion of linear $n$-normed spaces, Comput. Math. Appl., 61(3) (2011), 683–689. https://doi.org/10.1016/j.camwa.2010.12.015
- Şençimen, C., Statistical convergence in probability for a sequence of random functions, J. Theor. Probab., 26 (2013), 94–106. https://doi.org/10.1007/s10959-011-0346-7.
- Ünver, M., Orhan, C., Statistical convergence with respect to power series methods and applications to approximation theory, Numer. Funct. Anal. Optim., 40(5) (2019), 535–547. https://doi.org/10.1080/01630563.2018.1561467.
- Yamancı, U., Gürdal, M., Statistical convergence and operators on Fock space, New York J. Math., 22 (2016), 199–207.
- Zadeh, L. A., Fuzzy sets, Inform. control, 8 (1965), 338–353.