Research Article
BibTex RIS Cite

Kalsit Katkılı ve Kalsit Katkılı Olmayan Beton Numunelerde Nötron Zırhlama Davranışının İncelenmesi

Year 2022, Volume: 1 Issue: 1, 73 - 86, 30.03.2022
https://doi.org/10.55205/joctensa.11202235

Abstract

Nötron parçacıkları, atom çekirdeği ile doğrudan etkileşime girme ve dolaylı iyonizasyon yapma yapıları nedeniyle diğer radyasyon türlerinin oluşturduğu etkilerden farklı etkiler oluştururlar. Bu çalışmada kalsit içeren ve içermeyen beton numunelerin nötron zırhlama yetenekleri birbirleriyle karşılaştırılmıştır. CaCO3 (kalsit) katkılı beton ve saf beton deneysel olarak izotropik Am-Be nötron kaynağı karşısında karşılaştırılmıştır. Doğal olarak kalsit içeren betonun saf betona göre ağır formda olması, bu çalışmanın amacının ağır ve hafif betonun nötron radyasyonuna karşı koruyuculuk özelliklerini karşılaştırmak olduğu anlamına gelir. Her iki örnekte de örneklerin kalınlığı 2 cm ile başlamış ve 2 cm'lik artışlarla 10 cm'ye ulaşmıştır. Kalınlığın etkisi ve malzeme tipinin nötron zırhlama davranışı üzerine etkisi araştırılmıştır. Deney sonuçlarına göre, saf beton numunelerinin daha üstün özellik gösterdiği görülmüştür.

Ethical Statement

There is no requirement of Ethics Committee Approval for review articles.

Thanks

Special thanks for TENMAK Nuclear Energy Institute-Technology Development and Nuclear Research Department for their great support in experiments.

References

  • Aboelezz, E., & Hassan, G. M. (2018). Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose. Radiation Physics and Chemistry, 145, 5-10. https://doi.org/10.1016/j.radphyschem.2017.12.006
  • Adeli, R., Shirmardi, S. P., & Ahmadi, S. J. (2016). Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay. Radiation Physics and Chemistry, 127, 140-146. https://doi.org/10.1016/j.radphyschem.2016.06.026
  • Araz, A., Kavaz, E., & Durak, R. (2021). Neutron and photon shielding competences of aluminum open-cell foams filled with different epoxy mixtures: An experimental study. Radiation Physics and Chemistry, 182, 109382. https://doi.org/10.1016/j.radphyschem.2021.109382
  • Basyigit, C., Uysal, V., Kilinçarslan, Ş., Mavi, B., Günoğlu, K., Akkurt, I., & Akkaş, A. (2011, December). Investigating radiation shielding properties of different mineral origin heavyweight concretes. In AIP conference proceedings, 1400(1), 232-235. https://doi.org/10.1063/1.3663119
  • Biarrotte, J., Mueller, A. C. & Carluec B., (2004). PDS-XADS Preliminary Design Studies of an Experimental Accelerator-Driven System, Workshop Proceedings.
  • Dees, C. (2017). Neutron Radiation Shielding Strategies for Glovebox Applications (No. INL/CON-17-41743). Idaho National Lab.(INL), Idaho Falls, ID (United States).
  • Gencel, O., Bozkurt, A., Kam, E., Yaras, A., Erdogmus, E., & Sutcu, M. (2021). Gamma and neutron attenuation characteristics of bricks containing zinc extraction residue as a novel shielding material. Progress in Nuclear Energy, 139, 103878. https://doi.org/10.1016/j.pnucene.2021.103878
  • Gökoğlan, E., Ekinci, M., Özgenç, E., Derya, İ. Ö., & AŞIKOĞLU, M. (2020). Radyasyon ve insan sağlığı üzerindeki etkileri. Anatolian Clinic the Journal of Medical Sciences, 25(3), 289-294. https://doi.org/10.21673/anadoluklin.709434
  • Ipe, N. E., Fehrenbacher, G., Gudowska, I., Paganetti, H., Schippers, J., & Roesler, S. (2010). PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities. https://www.ptcog.ch/archive/Software_and_Docs/Shielding_radiation_protection.pdf
  • Jumpee, C., & Wongsawaeng, D. (2015, April). Innovative neutron shielding materials composed of natural rubber-styrene butadiene rubber blends, boron oxide and iron (III) oxide, In Journal of Physics: Conference Series, 611(1), 012019). IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/611/1/012019
  • Nami, Y. (2015). “Biological Effects of Radiation”, Nuclear Medicine Seminars, 1(3), 139-143. https://doi.org/ 10.4274/nts.0022
  • Özcan, M., Kam, E., Kaya, C., & Kaya, F. (2022). Boron‐containing nonwoven polymeric nanofiber mats as neutron shields in compact nuclear fusion reactors. International Journal of Energy Research. https://doi.org/10.1002/er.7652
  • Özdemir, T., Akbay, I. K., Uzun, H., & Reyhancan, I. A. (2016). Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. Progress in Nuclear Energy, 89, 102-109. https://doi.org/10.1016/j.pnucene.2016.02.007
  • Piotrowski, T. (2021). Neutron shielding evaluation of concretes and mortars: A review. Construction and Building Materials, 277, 122238. https://doi.org/10.1016/j.conbuildmat.2020.122238
  • Rwashdy Q., Günoğlu K., Akyıldırım H., Akkurt İ. (2016), “Investigation of Radiation Shielding Properties of Some Steels”, 3rd International Conference on Computational and Experimental Science and Engineering.
  • Sarıyer, D. & Küçer, R., (2015). Study of Neutron Attenuation Properties of Materials of Different Density, SDU Journal of Science, 10(1), 49-53.
  • Sarıyer, D., Küçer, R., & Küçer, N. (2015). Neutron shielding properties of concretes containing boron carbide and ferro–boron. Procedia-Social and Behavioral Sciences, 195, 1752-1756. https://doi.org/10.1016/j.sbspro.2015.06.320
  • Singh, V. P., & Badiger, N. M. (2014). Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy, 64, 301-310. https://doi.org/10.1016/j.anucene.2013.10.003
  • Soltani, Z., Beigzadeh, A., Ziaie, F., & Asadi, E. (2016). Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies. Radiation Physics and Chemistry, 127, 182-187. https://doi.org/10.1016/j.radphyschem.2016.06.027
  • Tesch, K., & Zazula, J. M. (1991). Shielding properties of iron at high energy proton accelerators studied by a Monte Carlo code. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 300(1), 179-187. https://doi.org/10.1016/0168-9002(91)90721-2
  • Tuna, T., & Bayrak, K. (2017). Investigation of the Shielding Capability of Concrete Matrixed Colemanite Reinforced Shielding Material. Journal of Engineering Technology and Applied Sciences, 2(2), 57-63. https://doi.org/10.30931/jetas.336562
  • Tuna, T., Eker, A. A., & Kam, E. (2021). Neutron shielding characteristics of polymer composites with boron carbide. Journal of the Korean Physical Society, 78(7), 566-573. https://doi.org/10.1007/s40042-021-00089-z.

Investigation of Neutron Shielding Behaviour of Unreinforced and Calcite Reinforced Concrete Samples

Year 2022, Volume: 1 Issue: 1, 73 - 86, 30.03.2022
https://doi.org/10.55205/joctensa.11202235

Abstract

Neutron particles are different, due to their nature of interacting directly with the atomic nucleus and making indirect ionization. In this study calcite containing and non-calcite containing concrete samples neutron shielding capabilities was compared with each other. CaCO3 (calcite) added concrete and pure concrete was experimentally compared against an isotropic Am-Be neutron source. Naturally, calcite containing concrete was in heavy form in comparison with pure concrete, means that the aim of these experiment is comparing neutron shielding properties of heavy and light concrete. In both samples, thickness of the samples was started with 2 cm and reach to 10 cm with 2 cm increases. The effect of thickness and the effect of material type on neutron shielding was investigated. According to the test results, pure concrete samples shows better shielding characteristics.

References

  • Aboelezz, E., & Hassan, G. M. (2018). Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose. Radiation Physics and Chemistry, 145, 5-10. https://doi.org/10.1016/j.radphyschem.2017.12.006
  • Adeli, R., Shirmardi, S. P., & Ahmadi, S. J. (2016). Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay. Radiation Physics and Chemistry, 127, 140-146. https://doi.org/10.1016/j.radphyschem.2016.06.026
  • Araz, A., Kavaz, E., & Durak, R. (2021). Neutron and photon shielding competences of aluminum open-cell foams filled with different epoxy mixtures: An experimental study. Radiation Physics and Chemistry, 182, 109382. https://doi.org/10.1016/j.radphyschem.2021.109382
  • Basyigit, C., Uysal, V., Kilinçarslan, Ş., Mavi, B., Günoğlu, K., Akkurt, I., & Akkaş, A. (2011, December). Investigating radiation shielding properties of different mineral origin heavyweight concretes. In AIP conference proceedings, 1400(1), 232-235. https://doi.org/10.1063/1.3663119
  • Biarrotte, J., Mueller, A. C. & Carluec B., (2004). PDS-XADS Preliminary Design Studies of an Experimental Accelerator-Driven System, Workshop Proceedings.
  • Dees, C. (2017). Neutron Radiation Shielding Strategies for Glovebox Applications (No. INL/CON-17-41743). Idaho National Lab.(INL), Idaho Falls, ID (United States).
  • Gencel, O., Bozkurt, A., Kam, E., Yaras, A., Erdogmus, E., & Sutcu, M. (2021). Gamma and neutron attenuation characteristics of bricks containing zinc extraction residue as a novel shielding material. Progress in Nuclear Energy, 139, 103878. https://doi.org/10.1016/j.pnucene.2021.103878
  • Gökoğlan, E., Ekinci, M., Özgenç, E., Derya, İ. Ö., & AŞIKOĞLU, M. (2020). Radyasyon ve insan sağlığı üzerindeki etkileri. Anatolian Clinic the Journal of Medical Sciences, 25(3), 289-294. https://doi.org/10.21673/anadoluklin.709434
  • Ipe, N. E., Fehrenbacher, G., Gudowska, I., Paganetti, H., Schippers, J., & Roesler, S. (2010). PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities. https://www.ptcog.ch/archive/Software_and_Docs/Shielding_radiation_protection.pdf
  • Jumpee, C., & Wongsawaeng, D. (2015, April). Innovative neutron shielding materials composed of natural rubber-styrene butadiene rubber blends, boron oxide and iron (III) oxide, In Journal of Physics: Conference Series, 611(1), 012019). IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/611/1/012019
  • Nami, Y. (2015). “Biological Effects of Radiation”, Nuclear Medicine Seminars, 1(3), 139-143. https://doi.org/ 10.4274/nts.0022
  • Özcan, M., Kam, E., Kaya, C., & Kaya, F. (2022). Boron‐containing nonwoven polymeric nanofiber mats as neutron shields in compact nuclear fusion reactors. International Journal of Energy Research. https://doi.org/10.1002/er.7652
  • Özdemir, T., Akbay, I. K., Uzun, H., & Reyhancan, I. A. (2016). Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. Progress in Nuclear Energy, 89, 102-109. https://doi.org/10.1016/j.pnucene.2016.02.007
  • Piotrowski, T. (2021). Neutron shielding evaluation of concretes and mortars: A review. Construction and Building Materials, 277, 122238. https://doi.org/10.1016/j.conbuildmat.2020.122238
  • Rwashdy Q., Günoğlu K., Akyıldırım H., Akkurt İ. (2016), “Investigation of Radiation Shielding Properties of Some Steels”, 3rd International Conference on Computational and Experimental Science and Engineering.
  • Sarıyer, D. & Küçer, R., (2015). Study of Neutron Attenuation Properties of Materials of Different Density, SDU Journal of Science, 10(1), 49-53.
  • Sarıyer, D., Küçer, R., & Küçer, N. (2015). Neutron shielding properties of concretes containing boron carbide and ferro–boron. Procedia-Social and Behavioral Sciences, 195, 1752-1756. https://doi.org/10.1016/j.sbspro.2015.06.320
  • Singh, V. P., & Badiger, N. M. (2014). Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy, 64, 301-310. https://doi.org/10.1016/j.anucene.2013.10.003
  • Soltani, Z., Beigzadeh, A., Ziaie, F., & Asadi, E. (2016). Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies. Radiation Physics and Chemistry, 127, 182-187. https://doi.org/10.1016/j.radphyschem.2016.06.027
  • Tesch, K., & Zazula, J. M. (1991). Shielding properties of iron at high energy proton accelerators studied by a Monte Carlo code. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 300(1), 179-187. https://doi.org/10.1016/0168-9002(91)90721-2
  • Tuna, T., & Bayrak, K. (2017). Investigation of the Shielding Capability of Concrete Matrixed Colemanite Reinforced Shielding Material. Journal of Engineering Technology and Applied Sciences, 2(2), 57-63. https://doi.org/10.30931/jetas.336562
  • Tuna, T., Eker, A. A., & Kam, E. (2021). Neutron shielding characteristics of polymer composites with boron carbide. Journal of the Korean Physical Society, 78(7), 566-573. https://doi.org/10.1007/s40042-021-00089-z.
There are 22 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Article
Authors

Tuncay Tuna 0000-0002-7900-2978

İpek Balnan 0000-0003-1150-651X

Melek Gülnur Samur This is me 0000-0001-7370-2407

Nursel Sezgin 0000-0001-6046-1990

Publication Date March 30, 2022
Published in Issue Year 2022 Volume: 1 Issue: 1

Cite

APA Tuna, T., Balnan, İ., Samur, M. G., Sezgin, N. (2022). Investigation of Neutron Shielding Behaviour of Unreinforced and Calcite Reinforced Concrete Samples. Cihannüma Teknoloji Fen Ve Mühendislik Bilimleri Akademi Dergisi, 1(1), 73-86. https://doi.org/10.55205/joctensa.11202235