Research Article
BibTex RIS Cite

Laurus nobilis L. Ekstraktlarının Bazı Patojen Bakteriler Üzerindeki Antibakteriyel Etkileri ve Bileşenlerinin MreC Proteini ile Etkileşimlerinin Moleküler Kenetlenme Yöntemi ile Değerlendirilmesi

Year 2024, Volume: 11 Issue: 2, 95 - 104, 31.12.2024
https://doi.org/10.48138/cjo.1541780

Abstract

Patojen mikroorganizmaların çoklu antibiyotik direnci geliştirmesi tedavi sürelerinin uzaması, ölüm oranlarının artması ve ekonomik kayıplara neden olmaktadır. Bu çalışmada, geleneksel antibiyotiklere karşı gelişen direnç nedeniyle alternatif antibakteriyel ajanlar geliştirilmesi ihtiyacı ele alınmıştır. Laurus nobilis yapraklarından elde edilen ekstraktların Escherichia coli ve Proteus mirabilis patojenlerine karşı antibakteriyel etkileri araştırılmıştır. Araştırmada, L. nobilis yaprak ekstraktlarının, özellikle yüksek dozlarda (50 µL), her iki patojen üzerinde de inhibisyon sağladığı belirlenmiştir. Ayrıca, moleküler kenetlenme yöntemi ile defne yaprağının uçucu yağ bileşenlerinin bakteri hücre duvarı oluşumunu kontrol eden proteinlerle etkileşim potansiyeli incelenmiştir. Sonuçlar, L. nobilis ekstraktlarının, özellikle çoklu antibiyotik direnci geliştiren patojenlere karşı, etkili bir alternatif olabileceğini göstermektedir.

References

  • Aumeeruddy-Elalfi, Z., Gurib-Fakim, A., & Mahomoodally, F. (2015). Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Industrial crops and products, 71, 197-204.
  • Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., … & De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 22(6), 930.
  • Church, N. A., & McKillip, J. L. (2021). Antibiotic resistance crisis: Challenges and imperatives. Biologia, 76(5), 1535-1550.
  • Contreras-Martel, C., Martins, A., Ecobichon, C., Trindade, D. M., Matteï, P. J., Hicham, S., ... & Dessen, A. (2017). Molecular architecture of the PBP2–MreC core bacterial cell wall synthesis complex. Nature communications, 8(1), 776.
  • Ekren, S., Yerlikaya, O., Tokul, H. E., Akpınar, A., & Açu, M. (2013). Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. Afr. J. Microbiol. Res, 7(5), 383-388.
  • Goudjil, M. B., Ladjel, S., Bencheikh, S. E., Zighmi, S., & Hamada, D. (2015). Study of the chemical composition, antibacterial and antioxidant activities of the essential oil extracted from the leaves of Algerian Laurus nobilis Lauraceae. Journal of Chemical and Pharmaceutical Research, 7(1), 379-385.
  • Hashem, H. E., Nath, A., & Kumer, A. (2022). Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. Journal of Molecular Structure, 1250, 131915.
  • Haşimi, N., Kızıl, S., Tolan, V. 2015: Rezene ve Adaçayı Uçucu Yağlarının Antimikrobiyal Aktivite Üzerine Bir Araştırma. Batman Üniversitesi Yaşam Bilimleri Dergisi; 5 (2): 227-235.
  • Hemeg, H. A., Moussa, I. M., Ibrahim, S., Dawoud, T. M., Alhaji, J. H., Mubarak, A. S., … & Marouf, S. A. (2020). Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 27(12), 3221-3227.
  • Houicher, A., Hechachna, H., Teldji, H., & Ozogul, F. (2016). In vitro study of the antifungal activity of essential oils obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Patents on Food, Nutrition & Agriculture, 8(2), 99-106.
  • Iwu, C. D., Korsten, L., & Okoh, A. I. (2020). The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen, 9(9), e1035.
  • Lovering, A. L., & Strynadka, N. C. (2007). High-resolution structure of the major periplasmic domain from the cell shape-determining filament MreC. Journal of molecular biology, 372(4), 1034-1044.
  • Martins, A., Contreras-Martel, C., Janet-Maitre, M., Miyachiro, M. M., Estrozi, L. F., Trindade, D. M., ... & Dessen, A. (2021). Self-association of MreC as a regulatory signal in bacterial cell wall elongation. Nature Communications, 12(1), 2987.
  • Mazzio, E. A., Li, N., Bauer, D., Mendonca, P., Taka, E., Darb, M., … & Soliman, K. F. (2016). Natural product HTP screening for antibacterial (E. coli 0157: H7) and anti-inflammatory agents in (LPS from E. coli O111: B4) activated macrophages and microglial cells; focus on sepsis. BMC complementary and alternative medicine, 16, 1-14.
  • Nabila, B., Piras, A., Fouzia, B., Falconieri, D., Kheira, G., Fedoul, F. F., & Majda, S. R. (2022). Chemical composition and antibacterial activity of the essential oil of Laurus nobilis leaves. Natural Product Research, 36(4), 989-993.
  • Ökmen, G., Ceylan, O., Erdal, P., Işık, D., Bayrak, D., Kardaş, Ş., Arslan, A. 2014. Gıda Patojenlerine Karşı Cyclamen mirabile Hildebr. Kök özütlerinin Antimikrobiyal Aktivitesi Üzerine Bir Çalışma. Anadolu Doğa Bilimleri Dergisi. 5(2): 1-7
  • Pal, M., Kerorsa, G. B., Marami, L. M., & Kandi, V. (2020). Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of staphylococcus aureus: a comprehensive review. American Journal of Public Health Research, 8(1), 14-21.
  • Said, A., Abu-Elghait, M., Atta, H. M., & Salem, S. S. (2024). Antibacterial activity of green synthesized silver nanoparticles using lawsonia nermiş against common pathogens from urinary tract infection. Applied Biochemistry and Biotechnology, 196(1), 85-98.
  • Sertçelik, M., Özbek, F. E., Sugeçti, S., & Necefoğlu, H. (2018). 4-Formilbenzoat’ın Co (II), Cu (II) ve Zn (II) ile izonikotinamid komplekslerinin sentezi; spektroskopik, termik özelliklerinin ve antibakteriyel etkinliklerinin incelenmesi. Journal of the Institute of Science and Technology, 8(4), 189-195.
  • Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414.
  • Sugeçti, S., & Koçer, F. (2015). Antimicrobial Activity Against Clinical Pathogenic Microorganisms of Commercially Important Natural Extract. Journal of Anatolian Natural Sciences, 6, 28-34.
  • Sugeçti, S. (2021a). Biochemical and immune responses of model organism Galleria mellonella after infection with Escherichia coli. Entomologia Experimentalis et Applicata, 169(10), 911-917.
  • Sugeçti, S. (2021b). Pathophysiological effects of Klebsiella pneumoniae infection on Galleria mellonella as an invertebrate model organism. Archives of Microbiology, 203(6), 3509-3517.
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA-NA. https://doi.org/10.1002/jcc.21334
  • Typas, A., Banzhaf, M., Gross, C. A., & Vollmer, W. (2012). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology, 10(2), 123-136.
  • Van Den Ent, F., Leaver, M., Bendezu, F., Errington, J., De Boer, P., & Löwe, J. (2006). Dimeric structure of the cell shape protein MreC and its functional implications. Molecular microbiology, 62(6), 1631-1642.
  • Vimal, A., Pal, D., Tripathi, T., & Kumar, A. (2017). Eucalyptol, sabinene and cinnamaldehyde: potent inhibitors of salmonella target protein L-asparaginase. 3 Biotech, 7, 1-4.
  • Yazıcı, H., Çolak, S., & Duran, U. (2024). Investigation geographic origin of Laurus nobilis L. leaves using FTIR, SEM-EDX, and XRD analysis. Spectroscopy Letters, 1–12.

Investigation of Antibacterial Effects of Laurus nobilis Extracts on Some Pathogenic Bacteria and the Interactions of Components with MreC Protein by Molecular Docking Method

Year 2024, Volume: 11 Issue: 2, 95 - 104, 31.12.2024
https://doi.org/10.48138/cjo.1541780

Abstract

The development of multiple antibiotic resistance by pathogenic microorganisms causes prolongation of treatment periods, increased mortality rates, and economic losses. In this study, the need to develop alternative antibacterial agents due to the development of resistance to conventional antibiotics was addressed. The antibacterial effects of extracts obtained from Laurus nobilis leaves against Escherichia coli and Proteus mirabilis pathogens were investigated. In the study, it was determined that L. nobilis leaf extracts, especially at high doses (50 µL), provided inhibition on both pathogens. In addition, the interaction potential of the volatile oil components of bay leaf with proteins that control bacterial cell wall formation was investigated by molecular docking method. The results show that L. nobilis extracts may be an effective alternative, especially against pathogens that develop multiple antibiotic resistance.

References

  • Aumeeruddy-Elalfi, Z., Gurib-Fakim, A., & Mahomoodally, F. (2015). Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Industrial crops and products, 71, 197-204.
  • Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., … & De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 22(6), 930.
  • Church, N. A., & McKillip, J. L. (2021). Antibiotic resistance crisis: Challenges and imperatives. Biologia, 76(5), 1535-1550.
  • Contreras-Martel, C., Martins, A., Ecobichon, C., Trindade, D. M., Matteï, P. J., Hicham, S., ... & Dessen, A. (2017). Molecular architecture of the PBP2–MreC core bacterial cell wall synthesis complex. Nature communications, 8(1), 776.
  • Ekren, S., Yerlikaya, O., Tokul, H. E., Akpınar, A., & Açu, M. (2013). Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. Afr. J. Microbiol. Res, 7(5), 383-388.
  • Goudjil, M. B., Ladjel, S., Bencheikh, S. E., Zighmi, S., & Hamada, D. (2015). Study of the chemical composition, antibacterial and antioxidant activities of the essential oil extracted from the leaves of Algerian Laurus nobilis Lauraceae. Journal of Chemical and Pharmaceutical Research, 7(1), 379-385.
  • Hashem, H. E., Nath, A., & Kumer, A. (2022). Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. Journal of Molecular Structure, 1250, 131915.
  • Haşimi, N., Kızıl, S., Tolan, V. 2015: Rezene ve Adaçayı Uçucu Yağlarının Antimikrobiyal Aktivite Üzerine Bir Araştırma. Batman Üniversitesi Yaşam Bilimleri Dergisi; 5 (2): 227-235.
  • Hemeg, H. A., Moussa, I. M., Ibrahim, S., Dawoud, T. M., Alhaji, J. H., Mubarak, A. S., … & Marouf, S. A. (2020). Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 27(12), 3221-3227.
  • Houicher, A., Hechachna, H., Teldji, H., & Ozogul, F. (2016). In vitro study of the antifungal activity of essential oils obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Patents on Food, Nutrition & Agriculture, 8(2), 99-106.
  • Iwu, C. D., Korsten, L., & Okoh, A. I. (2020). The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen, 9(9), e1035.
  • Lovering, A. L., & Strynadka, N. C. (2007). High-resolution structure of the major periplasmic domain from the cell shape-determining filament MreC. Journal of molecular biology, 372(4), 1034-1044.
  • Martins, A., Contreras-Martel, C., Janet-Maitre, M., Miyachiro, M. M., Estrozi, L. F., Trindade, D. M., ... & Dessen, A. (2021). Self-association of MreC as a regulatory signal in bacterial cell wall elongation. Nature Communications, 12(1), 2987.
  • Mazzio, E. A., Li, N., Bauer, D., Mendonca, P., Taka, E., Darb, M., … & Soliman, K. F. (2016). Natural product HTP screening for antibacterial (E. coli 0157: H7) and anti-inflammatory agents in (LPS from E. coli O111: B4) activated macrophages and microglial cells; focus on sepsis. BMC complementary and alternative medicine, 16, 1-14.
  • Nabila, B., Piras, A., Fouzia, B., Falconieri, D., Kheira, G., Fedoul, F. F., & Majda, S. R. (2022). Chemical composition and antibacterial activity of the essential oil of Laurus nobilis leaves. Natural Product Research, 36(4), 989-993.
  • Ökmen, G., Ceylan, O., Erdal, P., Işık, D., Bayrak, D., Kardaş, Ş., Arslan, A. 2014. Gıda Patojenlerine Karşı Cyclamen mirabile Hildebr. Kök özütlerinin Antimikrobiyal Aktivitesi Üzerine Bir Çalışma. Anadolu Doğa Bilimleri Dergisi. 5(2): 1-7
  • Pal, M., Kerorsa, G. B., Marami, L. M., & Kandi, V. (2020). Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of staphylococcus aureus: a comprehensive review. American Journal of Public Health Research, 8(1), 14-21.
  • Said, A., Abu-Elghait, M., Atta, H. M., & Salem, S. S. (2024). Antibacterial activity of green synthesized silver nanoparticles using lawsonia nermiş against common pathogens from urinary tract infection. Applied Biochemistry and Biotechnology, 196(1), 85-98.
  • Sertçelik, M., Özbek, F. E., Sugeçti, S., & Necefoğlu, H. (2018). 4-Formilbenzoat’ın Co (II), Cu (II) ve Zn (II) ile izonikotinamid komplekslerinin sentezi; spektroskopik, termik özelliklerinin ve antibakteriyel etkinliklerinin incelenmesi. Journal of the Institute of Science and Technology, 8(4), 189-195.
  • Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414.
  • Sugeçti, S., & Koçer, F. (2015). Antimicrobial Activity Against Clinical Pathogenic Microorganisms of Commercially Important Natural Extract. Journal of Anatolian Natural Sciences, 6, 28-34.
  • Sugeçti, S. (2021a). Biochemical and immune responses of model organism Galleria mellonella after infection with Escherichia coli. Entomologia Experimentalis et Applicata, 169(10), 911-917.
  • Sugeçti, S. (2021b). Pathophysiological effects of Klebsiella pneumoniae infection on Galleria mellonella as an invertebrate model organism. Archives of Microbiology, 203(6), 3509-3517.
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA-NA. https://doi.org/10.1002/jcc.21334
  • Typas, A., Banzhaf, M., Gross, C. A., & Vollmer, W. (2012). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology, 10(2), 123-136.
  • Van Den Ent, F., Leaver, M., Bendezu, F., Errington, J., De Boer, P., & Löwe, J. (2006). Dimeric structure of the cell shape protein MreC and its functional implications. Molecular microbiology, 62(6), 1631-1642.
  • Vimal, A., Pal, D., Tripathi, T., & Kumar, A. (2017). Eucalyptol, sabinene and cinnamaldehyde: potent inhibitors of salmonella target protein L-asparaginase. 3 Biotech, 7, 1-4.
  • Yazıcı, H., Çolak, S., & Duran, U. (2024). Investigation geographic origin of Laurus nobilis L. leaves using FTIR, SEM-EDX, and XRD analysis. Spectroscopy Letters, 1–12.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Serkan Sugeçti 0000-0003-3412-2367

Mustafa Sertçelik 0000-0001-7919-7907

Publication Date December 31, 2024
Submission Date September 1, 2024
Acceptance Date December 26, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Sugeçti, S., & Sertçelik, M. (2024). Laurus nobilis L. Ekstraktlarının Bazı Patojen Bakteriler Üzerindeki Antibakteriyel Etkileri ve Bileşenlerinin MreC Proteini ile Etkileşimlerinin Moleküler Kenetlenme Yöntemi ile Değerlendirilmesi. Caucasian Journal of Science, 11(2), 95-104. https://doi.org/10.48138/cjo.1541780

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png