Research Article
BibTex RIS Cite
Year 2020, Volume: 10 Issue: 2, 108 - 112, 29.06.2020
https://doi.org/10.33808/clinexphealthsci.707924

Abstract

References

  • [1] da Silva Dantas A, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, Gow NAR. Cell biology of Candida albicans–host interactions. Curr Opin Microbiol 2016; 34: 111-118.
  • [2] Vengurlekar S, Sharma R, Trivedi P. Efficacy of some natural compounds as antifungal agents. Pharmacogn Rev 2012; 6: 91-99.
  • [3] Miceli MH, Díaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis 2011; 11: 142-151.
  • [4] Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 2013; 9: e1003550.
  • [5] Jahagirdar VL, Davane MS, Aradhye SC, Nagoba BS. Candida species as potential nosocomial pathogens - A review. Electron J Gen Med 2018; 15: em05.
  • [6] Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS and Rogers PD. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol 2017; 7: 2173.
  • [7] Wiederhold NP. Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 2017; 10: 249-259.
  • [8] Jensen RH, Astvad KMT, Silva LV, Sanglard D, Jørgensen R, Nielsen KF, Mathiasen EG, Doroudian G, Perlin DS, Arendrup MC. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations. J Antimicrob Chemother 2015; 70: 2551-2555.
  • [9] Wang H, Xu YC, Hsueh PR. Epidemiology of candidemia and antifungal susceptibility in invasive Candida species in the Asia-Pacific region. Future Microbiol 2016; 11:11.
  • [10] Sarma S, Upadhyay S. Current perspective on emergence, diagnosis and drug resistance in Candida auris. Infect Drug Resist 2017; 10: 155-165.
  • [11] Shen B. A new golden age of natural products drug discovery. Cell 2015; 163: 1297-1300.
  • [12] Abad MJ, Ansuategui M, Bermejo P. Active antifungal substances from natural sources. Arkivoc 2007; 7: 116-145.
  • [13] Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013; 62: 10-24.
  • [14] Wang S, Wang Q, Yang E, Yan L, Li T, Zhuang H. Antimicrobial compounds produced by vaginal Lactobacillus crispatus are able to strongly inhibit Candida albicans growth, hyphal formation and regulate virulence-related gene expressions. Front Microbiol 2017; 8: 564.
  • [15] Wright AE, Bothelo JC, Guzman E, Harmody D, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK. Neopeltolide a macrolide from a Lithistid sponge of the family Neopeltidate. J Nat Prod 2007; 70: 412-416.
  • [16] Park J, Kwon O, An HJ, Park KK. Antifungal effects of bee venom components on Trichophyton rubrum: A novel approach of bee venom study for possible emerging antifungal agent. Ann Dermatol 2018; 30: 202-210.
  • [17] Führer E Willers D. The anal secretion of the endoparasitic larva Pimpla turionellea: sites of production and effects. J Insect Physiol 1986; 32: 361-367.
  • [18] Badr AN, Nada F, Shehata MG, Amra HA. Anti-mycotic and anti-mycotoxigenic properties of Egyptian dill. J Applied Sci 2017; 17: 184-195.
  • [19] Labruna MB, Leite RC, de Oliveira PR. Study of the weight of eggs from six ixodid species from Brazil. Mem Inst Oswaldo Cruz, Rio de Janeiro 1997; 92: 205-207.
  • [20] Sonenshine DE, Roe RM. Biology of Ticks. Vol. 1, 2nd ed. New York, Oxford University Press; 2014.
  • [21] Lees AD, Beament JWL. An egg-waxing organ in ticks. Q J Microsc Sci 1948; 89: 291-322.
  • [22] Yang X, Jia Q, Chen J, Hou Y, Zhai S, Yu Z, Liu J. Antibacterial activity of eggs and egg wax covering of selected Ixodid (Acari: Ixodidae) ticks. J Entomol Sci 2017; 52: 387-394.
  • [23] Booth TF. Observation on the composition and biosynthesis of egg wax lipids in the cattle tick, Boophilus microplus. Exp Appl Acarol 1992; 14: 137-149.
  • [24] Matsuo T, Okura N, Kakuda H, Yano Y. Reproduction in a metastriata tick, Haemaphysalis longicornis(Acari: Ixodidae). J Acarol Soc Jpn 2013; 22: 1-23.
  • [25] Arrieta MC, Leskin BK, Kaufman WR. Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Exp Appl Acarol 2006; 39: 297-313.
  • [26] Yu Z, Thomson ELS, Liu J, Dennis JJ, Jacobs RL, Kaufman WR. Antimicrobial activity in the egg wax of the tick Amblyomma hebraeum (Acari: Ixodidae) is associated with free fatty acids C16:1 and C18:2. Exp Appl Acarol 2012; 58: 453-470.
  • [27] Lima-Netto S, Mendonca RZ, Franzolin MR, Utescher CL, Orozco S, Máximo-Espindola C, Labruna M, Barros-Battesti DM. An interesting antimicrobial activity of egg wax from Amblyomma cajennense (Acari: Ixodidae). Syst Appl Acarol 2011; 16: 3-6.
  • [28] Lima-Netto S, Pinheiro A, Nakano E, Mendonca RMZ, Barros-Battesti DM, Mendonca RZ. Antiviral effect of the egg wax of Amblyommacajennense (Acari: Ixodidae). Cytotechnology 2012; 64: 601-606.
  • [29] Alduini N, Silva M, Franzolin M, Mendonça R, Lima-Netto S. Antimicrobial activity from ticks eggs waxes. BMC Proceedings 2014; 8: 156.
  • [30] Esteves E, Fogaca AC, Maldonado R, Silva FD, Manso PPA, Pelajo-Machado M, Valle D, Daffre S. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev Comp Immunol 2009; 33: 913-919.
  • [31] Zimmer KR, Macedo AJ, Nicastro GG, Baldini RL, Termignoni C. Egg wax from the cattle tick Rhipicephalus (Boophilus) microplus inhibits Pseudomonas aeruginosa biofilm. Ticks and Tick-borne Dis 2013a; 4: 366-376.
  • [32] Zimmer KR, Macedo AJ, Giordani RB, Conceição JM, Nicastro GG, Boechat AL, Baldini RL, Abraham WR, Termignoni C. A steroidal molecule present in the egg wax of the tick Rhipicephalus (Boophilus) microplus inhibits bacterial biofilms. Environmental Microbiol 2013b; 15: 2008-2018.
  • [33] Sonenshine DE, Tigner JA. Oviposition and hatching in two species of ticks in relation to moisture deficit. Ann Entomol Soc Am 1969; 62: 628-640.
  • [34] Clinical and Laboratory Standard Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts-third edition: approved standard M27–A3. Wayne: CLSI; 2008.
  • [35] Teel PD. Effect of Saturation Deficit on Eggs of Boophilus annulatus and B. microplus (Acari: Ixodidae). Ann Entomol Soc Am 1984; 77: 65-68.
  • [36] Estrada-Peña A, Mihalca AD, Petney TN. Ticks of Europe and North Africa: A Guide to Species Identification. 1st ed. Switzerland, Springer International Publishing; 2017.

In-vitro anticandidial efficacy of tick egg wax from Hyalomma marginatum, Rhipicephalus bursa and Dermacentor marginatus

Year 2020, Volume: 10 Issue: 2, 108 - 112, 29.06.2020
https://doi.org/10.33808/clinexphealthsci.707924

Abstract

Objective: In the previous studies, the antibacterial, antifungal, and antiviral efficacy of the tick egg wax-coating of certain tick species were
examined and some significant results were obtained. However, related researches and studied tick species are limited. There are hundreds
of tick species, and it is well known that the antimicrobial efficacy of the wax is closely related to the species. The aim of this study was to
investigate the in-vitro anticandidial efficacy of the egg waxes belonging to three tick species, which have not been studied before and have
quite different biological and ecological differences.

Methods: In the study, the egg waxes of the tick species, Hyalomma marginatum, Rhipicephalus bursa, and Dermacentor marginatus, were
used on Candida albicans ATCC10231, Candida parapsilosis ATCC 22019, and Candida tropicalis ATCC 750. Antimycotic susceptibility test was
carried out in accordance with the Clinical and Laboratory Standards Institute (CLSI) recommendations using the M27-A3 microdilution method.

Results: It was determined that the wax of Rhipicephalus bursa has inhibitory effect on Candida tropicalis ATCC 750 in a particular concentration,
and no significant effects were observed in other trials.

Conclusion: Anticandidial effect obtained from the egg wax of R. bursa can be associated with some distinctive biological characteristics, and it
was concluded that the detailed studies with different tick species might yield significant results for the discovery of new generation antifungals.

References

  • [1] da Silva Dantas A, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, Gow NAR. Cell biology of Candida albicans–host interactions. Curr Opin Microbiol 2016; 34: 111-118.
  • [2] Vengurlekar S, Sharma R, Trivedi P. Efficacy of some natural compounds as antifungal agents. Pharmacogn Rev 2012; 6: 91-99.
  • [3] Miceli MH, Díaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis 2011; 11: 142-151.
  • [4] Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 2013; 9: e1003550.
  • [5] Jahagirdar VL, Davane MS, Aradhye SC, Nagoba BS. Candida species as potential nosocomial pathogens - A review. Electron J Gen Med 2018; 15: em05.
  • [6] Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS and Rogers PD. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol 2017; 7: 2173.
  • [7] Wiederhold NP. Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 2017; 10: 249-259.
  • [8] Jensen RH, Astvad KMT, Silva LV, Sanglard D, Jørgensen R, Nielsen KF, Mathiasen EG, Doroudian G, Perlin DS, Arendrup MC. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations. J Antimicrob Chemother 2015; 70: 2551-2555.
  • [9] Wang H, Xu YC, Hsueh PR. Epidemiology of candidemia and antifungal susceptibility in invasive Candida species in the Asia-Pacific region. Future Microbiol 2016; 11:11.
  • [10] Sarma S, Upadhyay S. Current perspective on emergence, diagnosis and drug resistance in Candida auris. Infect Drug Resist 2017; 10: 155-165.
  • [11] Shen B. A new golden age of natural products drug discovery. Cell 2015; 163: 1297-1300.
  • [12] Abad MJ, Ansuategui M, Bermejo P. Active antifungal substances from natural sources. Arkivoc 2007; 7: 116-145.
  • [13] Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013; 62: 10-24.
  • [14] Wang S, Wang Q, Yang E, Yan L, Li T, Zhuang H. Antimicrobial compounds produced by vaginal Lactobacillus crispatus are able to strongly inhibit Candida albicans growth, hyphal formation and regulate virulence-related gene expressions. Front Microbiol 2017; 8: 564.
  • [15] Wright AE, Bothelo JC, Guzman E, Harmody D, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK. Neopeltolide a macrolide from a Lithistid sponge of the family Neopeltidate. J Nat Prod 2007; 70: 412-416.
  • [16] Park J, Kwon O, An HJ, Park KK. Antifungal effects of bee venom components on Trichophyton rubrum: A novel approach of bee venom study for possible emerging antifungal agent. Ann Dermatol 2018; 30: 202-210.
  • [17] Führer E Willers D. The anal secretion of the endoparasitic larva Pimpla turionellea: sites of production and effects. J Insect Physiol 1986; 32: 361-367.
  • [18] Badr AN, Nada F, Shehata MG, Amra HA. Anti-mycotic and anti-mycotoxigenic properties of Egyptian dill. J Applied Sci 2017; 17: 184-195.
  • [19] Labruna MB, Leite RC, de Oliveira PR. Study of the weight of eggs from six ixodid species from Brazil. Mem Inst Oswaldo Cruz, Rio de Janeiro 1997; 92: 205-207.
  • [20] Sonenshine DE, Roe RM. Biology of Ticks. Vol. 1, 2nd ed. New York, Oxford University Press; 2014.
  • [21] Lees AD, Beament JWL. An egg-waxing organ in ticks. Q J Microsc Sci 1948; 89: 291-322.
  • [22] Yang X, Jia Q, Chen J, Hou Y, Zhai S, Yu Z, Liu J. Antibacterial activity of eggs and egg wax covering of selected Ixodid (Acari: Ixodidae) ticks. J Entomol Sci 2017; 52: 387-394.
  • [23] Booth TF. Observation on the composition and biosynthesis of egg wax lipids in the cattle tick, Boophilus microplus. Exp Appl Acarol 1992; 14: 137-149.
  • [24] Matsuo T, Okura N, Kakuda H, Yano Y. Reproduction in a metastriata tick, Haemaphysalis longicornis(Acari: Ixodidae). J Acarol Soc Jpn 2013; 22: 1-23.
  • [25] Arrieta MC, Leskin BK, Kaufman WR. Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Exp Appl Acarol 2006; 39: 297-313.
  • [26] Yu Z, Thomson ELS, Liu J, Dennis JJ, Jacobs RL, Kaufman WR. Antimicrobial activity in the egg wax of the tick Amblyomma hebraeum (Acari: Ixodidae) is associated with free fatty acids C16:1 and C18:2. Exp Appl Acarol 2012; 58: 453-470.
  • [27] Lima-Netto S, Mendonca RZ, Franzolin MR, Utescher CL, Orozco S, Máximo-Espindola C, Labruna M, Barros-Battesti DM. An interesting antimicrobial activity of egg wax from Amblyomma cajennense (Acari: Ixodidae). Syst Appl Acarol 2011; 16: 3-6.
  • [28] Lima-Netto S, Pinheiro A, Nakano E, Mendonca RMZ, Barros-Battesti DM, Mendonca RZ. Antiviral effect of the egg wax of Amblyommacajennense (Acari: Ixodidae). Cytotechnology 2012; 64: 601-606.
  • [29] Alduini N, Silva M, Franzolin M, Mendonça R, Lima-Netto S. Antimicrobial activity from ticks eggs waxes. BMC Proceedings 2014; 8: 156.
  • [30] Esteves E, Fogaca AC, Maldonado R, Silva FD, Manso PPA, Pelajo-Machado M, Valle D, Daffre S. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev Comp Immunol 2009; 33: 913-919.
  • [31] Zimmer KR, Macedo AJ, Nicastro GG, Baldini RL, Termignoni C. Egg wax from the cattle tick Rhipicephalus (Boophilus) microplus inhibits Pseudomonas aeruginosa biofilm. Ticks and Tick-borne Dis 2013a; 4: 366-376.
  • [32] Zimmer KR, Macedo AJ, Giordani RB, Conceição JM, Nicastro GG, Boechat AL, Baldini RL, Abraham WR, Termignoni C. A steroidal molecule present in the egg wax of the tick Rhipicephalus (Boophilus) microplus inhibits bacterial biofilms. Environmental Microbiol 2013b; 15: 2008-2018.
  • [33] Sonenshine DE, Tigner JA. Oviposition and hatching in two species of ticks in relation to moisture deficit. Ann Entomol Soc Am 1969; 62: 628-640.
  • [34] Clinical and Laboratory Standard Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts-third edition: approved standard M27–A3. Wayne: CLSI; 2008.
  • [35] Teel PD. Effect of Saturation Deficit on Eggs of Boophilus annulatus and B. microplus (Acari: Ixodidae). Ann Entomol Soc Am 1984; 77: 65-68.
  • [36] Estrada-Peña A, Mihalca AD, Petney TN. Ticks of Europe and North Africa: A Guide to Species Identification. 1st ed. Switzerland, Springer International Publishing; 2017.
There are 36 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Nazlı Bılgın 0000-0001-7171-2097

Mayram Hacıoglu This is me 0000-0003-0823-631X

Cagla Bozkurt This is me 0000-0003-1202-1266

Berna Erdal This is me 0000-0003-3375-7926

Sirri Kar This is me 0000-0002-3301-6215

Publication Date June 29, 2020
Submission Date February 23, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Bılgın, N., Hacıoglu, M., Bozkurt, C., Erdal, B., et al. (2020). In-vitro anticandidial efficacy of tick egg wax from Hyalomma marginatum, Rhipicephalus bursa and Dermacentor marginatus. Clinical and Experimental Health Sciences, 10(2), 108-112. https://doi.org/10.33808/clinexphealthsci.707924
AMA Bılgın N, Hacıoglu M, Bozkurt C, Erdal B, Kar S. In-vitro anticandidial efficacy of tick egg wax from Hyalomma marginatum, Rhipicephalus bursa and Dermacentor marginatus. Clinical and Experimental Health Sciences. June 2020;10(2):108-112. doi:10.33808/clinexphealthsci.707924
Chicago Bılgın, Nazlı, Mayram Hacıoglu, Cagla Bozkurt, Berna Erdal, and Sirri Kar. “In-Vitro Anticandidial Efficacy of Tick Egg Wax from Hyalomma Marginatum, Rhipicephalus Bursa and Dermacentor Marginatus”. Clinical and Experimental Health Sciences 10, no. 2 (June 2020): 108-12. https://doi.org/10.33808/clinexphealthsci.707924.
EndNote Bılgın N, Hacıoglu M, Bozkurt C, Erdal B, Kar S (June 1, 2020) In-vitro anticandidial efficacy of tick egg wax from Hyalomma marginatum, Rhipicephalus bursa and Dermacentor marginatus. Clinical and Experimental Health Sciences 10 2 108–112.
IEEE N. Bılgın, M. Hacıoglu, C. Bozkurt, B. Erdal, and S. Kar, “In-vitro anticandidial efficacy of tick egg wax from Hyalomma marginatum, Rhipicephalus bursa and Dermacentor marginatus”, Clinical and Experimental Health Sciences, vol. 10, no. 2, pp. 108–112, 2020, doi: 10.33808/clinexphealthsci.707924.
ISNAD Bılgın, Nazlı et al. “In-Vitro Anticandidial Efficacy of Tick Egg Wax from Hyalomma Marginatum, Rhipicephalus Bursa and Dermacentor Marginatus”. Clinical and Experimental Health Sciences 10/2 (June 2020), 108-112. https://doi.org/10.33808/clinexphealthsci.707924.
JAMA Bılgın N, Hacıoglu M, Bozkurt C, Erdal B, Kar S. In-vitro anticandidial efficacy of tick egg wax from Hyalomma marginatum, Rhipicephalus bursa and Dermacentor marginatus. Clinical and Experimental Health Sciences. 2020;10:108–112.
MLA Bılgın, Nazlı et al. “In-Vitro Anticandidial Efficacy of Tick Egg Wax from Hyalomma Marginatum, Rhipicephalus Bursa and Dermacentor Marginatus”. Clinical and Experimental Health Sciences, vol. 10, no. 2, 2020, pp. 108-12, doi:10.33808/clinexphealthsci.707924.
Vancouver Bılgın N, Hacıoglu M, Bozkurt C, Erdal B, Kar S. In-vitro anticandidial efficacy of tick egg wax from Hyalomma marginatum, Rhipicephalus bursa and Dermacentor marginatus. Clinical and Experimental Health Sciences. 2020;10(2):108-12.

14639   14640