Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2021, Volume 4, Issue 1, 1 - 19, 01.03.2021
https://doi.org/10.33205/cma.844390

Abstract

References

  • F. Altomare: Proiettori positivi, famiglie risolventi e problema di Dirichlet, Ricerche Mat., 26 (1) (1977), 63–78.
  • F. Altomare: Operatori di Lion generalizzati e famiglie risolventi, Boll. Un. Mat. Ital. B (5), 15 (1) (1978), 60–79.
  • F. Altomare: Lion operators over the product of compact spaces, semigroups of positive operators, and the Dirichlet problem, Ricerche Mat., 27 (1) (1978), 33–58.
  • F. Altomare: Théorèmes de convergence de type Korovkin relativement a une applications lineaire positive, Boll. Un. Mat. Ital. B (5), 16 (3) (1979), 1013–1031.
  • F. Altomare: On the universal convergence sets, Ann. Mat. Pura Appl., 138 (4) (1984), 223–243.
  • F. Altomare: Positive linear forms and their determining subspaces, Ann. Math. Pura Appl., 154 (4) (1989), 243–258.
  • F. Altomare: Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (2) (1989), 259–279.
  • F. Altomare: Asymptotic formulae for Bernstein-Schnabl operators and smoothness, Bollettino U.M.I., II (9) (2009), 135–150, Corrigendum: Bollettino U.M.I., IV (9) (2011), 259–262.
  • F. Altomare: Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory, 5 (2010), 92–164.
  • F. Altomare: Iterates of Markov operators and constructive approximation of semigroups, Constr. Math. Anal., 2 (1) (2019), 22–39.
  • F. Altomare: On the convergence of sequences of positive linear operators and functionals on bounded function spaces, Proc. Amer. Math. Soc., to appear. DOI: https://doi.org/10.1090/proc/15445.
  • F. Altomare et al: The Maratea Conferences on Functional Analysis and Approximation Theory from 1989 to 2009-An overview, 2009, free available on line at https://galileo.dm.uniba.it/Members/altomare/Maratea-Conferences.pdf.
  • F. Altomare, R. Amiar: Asymptotic formulae for positive linear operators, Mathematica Balkanica New Series, 16 (2002), Fasc. 1–4, 283–304.
  • F. Altomare, M. Campiti: Korovkin-type approximation theory and its applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter & C., Berlin (1994).
  • F. Altomare, M. Cappelletti Montano: Affine projections on adapted subalgebras of continuous functions, Positivity, 9 (4) (2005), 625–643.
  • F. Altomare, M. Cappelletti Montano: Regular vector lattices of continuous functions and Korovkin-type theorems - Part I, Studia Math., 171 (3) (2005), 239–260.
  • F. Altomare, M. Cappelletti Montano: On some density theorems in regular vector lattices of continuous functions, Collect. Math., 58 (2) (2007), 131–149.
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra¸sa: On differential operators associated with Markov operators, J. Funct. Anal., 266 (6) (2014), 3612–3631.
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Rasa: On Markov operators preserving polynomials. J. Math. Anal. Appl., 415 (1) (2014), 477–495.
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra¸sa: Markov operators, positive semigroups and approximation processes, De Gruyter Studies in Mathematics 61, De Gruyter, Berlin (2014).
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra¸sa: Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators, J. Math. Anal. Appl., 458 (1) (2018), 153–173.
  • F. Altomare, S. Diomede: Asymptotic formulae for positive linear operators: direct and converse results, Jaén J. Approx., 2 (2) (2010), 255–287.
  • F. Altomare, V. Leonessa and I. Ra¸sa: On Bernstein-Schnabl operators on the unit interval, Z. Anal. Anw., 27 (3) (2008), 353–379.
  • F. Altomare, V. Leonessa: An invitation to the study of evolution equations by means of positive linear operators, Lecture Notes of Seminario Interdisciplinare di Matematica, 8 (2009), 1–41.
  • F. Altomare, S. Milella and G. Musceo: On a class of positive C0-semigroups on weighted continuous function spaces, Note Mat., 31 (1) (2011), 15–27.
  • F. Altomare, S. Milella and G. Musceo: Multiplicative perturbations of the Laplacian and related approximation problems, J. Evol. Equ., 11 (2011), 771–792.
  • F. Altomare, I. Ra¸sa: Towards a characterization of a class of differential operators associated with positive projection, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), suppl., 3–38.
  • M. Campiti: On the scientific heritage of Professor Francesco Altomare. A presentation of some meaningful results, Recent developments in Functional Analysis and Approximation Theory, Lecce (Italy) (2011), unpublished.
  • A. Pietsch: History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA (2007).
  • R. Schnabl: Eine verallgemeinerung der bernsteinpolynome, Math. Ann., 179 (1968), 74–82.

Francesco Altomare - the remarkable mathematician and human being

Year 2021, Volume 4, Issue 1, 1 - 19, 01.03.2021
https://doi.org/10.33205/cma.844390

Abstract

We laconically describe the great contributions of Professor Francesco Altomare to mathematical research and PhD education, and his unique status in the mathematical community. In particular, we present and give examples of his innovative and great achievements related to the following areas of mathematics: Functional Analysis, Operator Theory, Potential Theory, Approximation Theory, Probability Theory, Function Spaces, Choquet's Theory, Dirichlet's Problem and Semigroup Theory. Moreover, we report on and give concrete examples of his unique way to work together with PhD students, both before and sometimes also after their dissertation. Finally, we shortly describe his remarkable “class travel” from “simple” conditions with no academic traditions in his family in the small hometown Giovinazzo to finally become the broad, ingenious, and powerful mathematician he is regarded to be today.

References

  • F. Altomare: Proiettori positivi, famiglie risolventi e problema di Dirichlet, Ricerche Mat., 26 (1) (1977), 63–78.
  • F. Altomare: Operatori di Lion generalizzati e famiglie risolventi, Boll. Un. Mat. Ital. B (5), 15 (1) (1978), 60–79.
  • F. Altomare: Lion operators over the product of compact spaces, semigroups of positive operators, and the Dirichlet problem, Ricerche Mat., 27 (1) (1978), 33–58.
  • F. Altomare: Théorèmes de convergence de type Korovkin relativement a une applications lineaire positive, Boll. Un. Mat. Ital. B (5), 16 (3) (1979), 1013–1031.
  • F. Altomare: On the universal convergence sets, Ann. Mat. Pura Appl., 138 (4) (1984), 223–243.
  • F. Altomare: Positive linear forms and their determining subspaces, Ann. Math. Pura Appl., 154 (4) (1989), 243–258.
  • F. Altomare: Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (2) (1989), 259–279.
  • F. Altomare: Asymptotic formulae for Bernstein-Schnabl operators and smoothness, Bollettino U.M.I., II (9) (2009), 135–150, Corrigendum: Bollettino U.M.I., IV (9) (2011), 259–262.
  • F. Altomare: Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory, 5 (2010), 92–164.
  • F. Altomare: Iterates of Markov operators and constructive approximation of semigroups, Constr. Math. Anal., 2 (1) (2019), 22–39.
  • F. Altomare: On the convergence of sequences of positive linear operators and functionals on bounded function spaces, Proc. Amer. Math. Soc., to appear. DOI: https://doi.org/10.1090/proc/15445.
  • F. Altomare et al: The Maratea Conferences on Functional Analysis and Approximation Theory from 1989 to 2009-An overview, 2009, free available on line at https://galileo.dm.uniba.it/Members/altomare/Maratea-Conferences.pdf.
  • F. Altomare, R. Amiar: Asymptotic formulae for positive linear operators, Mathematica Balkanica New Series, 16 (2002), Fasc. 1–4, 283–304.
  • F. Altomare, M. Campiti: Korovkin-type approximation theory and its applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter & C., Berlin (1994).
  • F. Altomare, M. Cappelletti Montano: Affine projections on adapted subalgebras of continuous functions, Positivity, 9 (4) (2005), 625–643.
  • F. Altomare, M. Cappelletti Montano: Regular vector lattices of continuous functions and Korovkin-type theorems - Part I, Studia Math., 171 (3) (2005), 239–260.
  • F. Altomare, M. Cappelletti Montano: On some density theorems in regular vector lattices of continuous functions, Collect. Math., 58 (2) (2007), 131–149.
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra¸sa: On differential operators associated with Markov operators, J. Funct. Anal., 266 (6) (2014), 3612–3631.
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Rasa: On Markov operators preserving polynomials. J. Math. Anal. Appl., 415 (1) (2014), 477–495.
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra¸sa: Markov operators, positive semigroups and approximation processes, De Gruyter Studies in Mathematics 61, De Gruyter, Berlin (2014).
  • F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Ra¸sa: Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators, J. Math. Anal. Appl., 458 (1) (2018), 153–173.
  • F. Altomare, S. Diomede: Asymptotic formulae for positive linear operators: direct and converse results, Jaén J. Approx., 2 (2) (2010), 255–287.
  • F. Altomare, V. Leonessa and I. Ra¸sa: On Bernstein-Schnabl operators on the unit interval, Z. Anal. Anw., 27 (3) (2008), 353–379.
  • F. Altomare, V. Leonessa: An invitation to the study of evolution equations by means of positive linear operators, Lecture Notes of Seminario Interdisciplinare di Matematica, 8 (2009), 1–41.
  • F. Altomare, S. Milella and G. Musceo: On a class of positive C0-semigroups on weighted continuous function spaces, Note Mat., 31 (1) (2011), 15–27.
  • F. Altomare, S. Milella and G. Musceo: Multiplicative perturbations of the Laplacian and related approximation problems, J. Evol. Equ., 11 (2011), 771–792.
  • F. Altomare, I. Ra¸sa: Towards a characterization of a class of differential operators associated with positive projection, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), suppl., 3–38.
  • M. Campiti: On the scientific heritage of Professor Francesco Altomare. A presentation of some meaningful results, Recent developments in Functional Analysis and Approximation Theory, Lecce (Italy) (2011), unpublished.
  • A. Pietsch: History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA (2007).
  • R. Schnabl: Eine verallgemeinerung der bernsteinpolynome, Math. Ann., 179 (1968), 74–82.

Details

Primary Language English
Subjects Mathematics
Journal Section Articles
Authors

Mirella CAPPELLETTI MONTANO This is me
University of Bari
0000-0003-1850-0428
Italy


Vita LEONESSA (Primary Author)
University of Basilicata
0000-0001-9547-8397
Italy


Lars Erik PERSSON
Karlstad University
0000-0001-9140-6724
Sweden

Thanks Work performed by the first and the second author under the auspices of G.N.A.M.P.A. (INdAM).
Publication Date March 1, 2021
Published in Issue Year 2021, Volume 4, Issue 1

Cite

Bibtex @research article { cma844390, journal = {Constructive Mathematical Analysis}, issn = {2651-2939}, address = {}, publisher = {Tuncer ACAR}, year = {2021}, volume = {4}, pages = {1 - 19}, doi = {10.33205/cma.844390}, title = {Francesco Altomare - the remarkable mathematician and human being}, key = {cite}, author = {Cappellettı Montano, Mirella and Leonessa, Vita and Persson, Lars Erik} }
APA Cappellettı Montano, M. , Leonessa, V. & Persson, L. E. (2021). Francesco Altomare - the remarkable mathematician and human being . Constructive Mathematical Analysis , 4 (1) , 1-19 . DOI: 10.33205/cma.844390
MLA Cappellettı Montano, M. , Leonessa, V. , Persson, L. E. "Francesco Altomare - the remarkable mathematician and human being" . Constructive Mathematical Analysis 4 (2021 ): 1-19 <https://dergipark.org.tr/en/pub/cma/issue/60507/844390>
Chicago Cappellettı Montano, M. , Leonessa, V. , Persson, L. E. "Francesco Altomare - the remarkable mathematician and human being". Constructive Mathematical Analysis 4 (2021 ): 1-19
RIS TY - JOUR T1 - Francesco Altomare - the remarkable mathematician and human being AU - Mirella Cappellettı Montano , Vita Leonessa , Lars Erik Persson Y1 - 2021 PY - 2021 N1 - doi: 10.33205/cma.844390 DO - 10.33205/cma.844390 T2 - Constructive Mathematical Analysis JF - Journal JO - JOR SP - 1 EP - 19 VL - 4 IS - 1 SN - 2651-2939- M3 - doi: 10.33205/cma.844390 UR - https://doi.org/10.33205/cma.844390 Y2 - 2021 ER -
EndNote %0 Constructive Mathematical Analysis Francesco Altomare - the remarkable mathematician and human being %A Mirella Cappellettı Montano , Vita Leonessa , Lars Erik Persson %T Francesco Altomare - the remarkable mathematician and human being %D 2021 %J Constructive Mathematical Analysis %P 2651-2939- %V 4 %N 1 %R doi: 10.33205/cma.844390 %U 10.33205/cma.844390
ISNAD Cappellettı Montano, Mirella , Leonessa, Vita , Persson, Lars Erik . "Francesco Altomare - the remarkable mathematician and human being". Constructive Mathematical Analysis 4 / 1 (March 2021): 1-19 . https://doi.org/10.33205/cma.844390
AMA Cappellettı Montano M. , Leonessa V. , Persson L. E. Francesco Altomare - the remarkable mathematician and human being. CMA. 2021; 4(1): 1-19.
Vancouver Cappellettı Montano M. , Leonessa V. , Persson L. E. Francesco Altomare - the remarkable mathematician and human being. Constructive Mathematical Analysis. 2021; 4(1): 1-19.
IEEE M. Cappellettı Montano , V. Leonessa and L. E. Persson , "Francesco Altomare - the remarkable mathematician and human being", Constructive Mathematical Analysis, vol. 4, no. 1, pp. 1-19, Mar. 2021, doi:10.33205/cma.844390

13753

Creative Commons License
The published articles in CMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



follow me on facebook                        follow us on instagram