Research Article
BibTex RIS Cite

On the Korovkin-type approximation of set-valued continuous functions

Year 2021, Volume: 4 Issue: 1, 119 - 134, 01.03.2021
https://doi.org/10.33205/cma.863145

Abstract

This paper is devoted to some Korovkin approximation results in cones of Hausdorff continuous set-valued functions and in spaces of vector valued functions. Some classical results are exposed in order to give a more complete treatment of the subject. New contributions are concerned both with the general theory than in particular with the so-called convexity monotone operators, which are considered in cones of set-valued function and also in spaces of vector-valued functions.

Thanks

Work performed under the auspices of G.N.A.M.P.A. (INdAM)

References

  • F. Altomare, M. Campiti: Korovkin-type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics 17, Berlin-Heidelberg-New York, (1994).
  • F. Altomare, M. Cappelletti, V. Leonessa and I. Ra¸sa: Markov Operators, Positive Semigroups and Approximation Processes, De Gruyter Studies in Mathematics 61, Berlin-Munich-Boston, (2015).
  • H. Berens, G. G. Lorentz: Geometric theory of Korovkin sets, J. Approx. Theory, 15 (3) (1975), 161–189.
  • M. Campiti: A Korovkin-type theorem for set-valued Hausdorff continuous functions, Le Mathematiche, 42 (I–II) (1987), 29–35.
  • M. Campiti: Approximation of continuous set-valued functions in Fréchet spaces I, Rev. Anal. Numér. Théor. Approx., 20 (1–2) (1991), 15–23.
  • M. Campiti: Approximation of continuous set-valued functions in Fréchet spaces II, Rev. Anal. Numér. Théor. Approx., 20 (1–2) (1991), 24–38.
  • M. Campiti: Korovkin theorems for vector-valued continuous functions, in "Approximation Theory, Spline Functions and Applications" (Internat. Conf., Maratea, May 1991), 293–302, Nato Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 356, Kluwer Acad. Publ., Dordrecht, 1992.
  • M. Campiti: Convergence of nets of monotone operators between cones of set-valued functions, Atti dell’Accademia delle Scienze di Torino, 126 (1992), 39–54.
  • M. Campiti: Convexity-monotone operators in Korovkin theory, Rend. Circ. Mat. Palermo, 33 (1993), 229–238.
  • M. Campiti: Korovkin-type approximation in spaces of vector-valued and set-valued functions, Applicable Analysis, 98 (13) (2019), 2486–2496.
  • L. B. O. Ferguson, M. D. Rusk: Korovkin sets for an operator on a space of continuous functions, Pacific J. Math., 65 (2) (1976), 337–345.
  • W. Heping: Korovkin-type theorem and application, J. Approx. Theory, 132 (2005), 258–264.
  • K. Keimel, W. Roth: A Korovkin type approximation theorem for set-valued functions, Proc. Amer. Math. Soc., 104 (1988), 819–824.
  • K. Keimel, W. Roth: Ordered cones and approximation, Lecture Notes in Mathematics, 1517, Springer-Verlag Berlin Heidelberg, (1992).
  • N. I. Mahmudov: Korovkin-type theorems and applications, Cent. Eur. J. Math., 7 (2) (2009), 348–356.
  • T. Nishishiraho: Convergence of quasi-positive linear operators, Atti Sem. Mat. Fis. Univ. Modena, 29 (1991), 367–374.
Year 2021, Volume: 4 Issue: 1, 119 - 134, 01.03.2021
https://doi.org/10.33205/cma.863145

Abstract

References

  • F. Altomare, M. Campiti: Korovkin-type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics 17, Berlin-Heidelberg-New York, (1994).
  • F. Altomare, M. Cappelletti, V. Leonessa and I. Ra¸sa: Markov Operators, Positive Semigroups and Approximation Processes, De Gruyter Studies in Mathematics 61, Berlin-Munich-Boston, (2015).
  • H. Berens, G. G. Lorentz: Geometric theory of Korovkin sets, J. Approx. Theory, 15 (3) (1975), 161–189.
  • M. Campiti: A Korovkin-type theorem for set-valued Hausdorff continuous functions, Le Mathematiche, 42 (I–II) (1987), 29–35.
  • M. Campiti: Approximation of continuous set-valued functions in Fréchet spaces I, Rev. Anal. Numér. Théor. Approx., 20 (1–2) (1991), 15–23.
  • M. Campiti: Approximation of continuous set-valued functions in Fréchet spaces II, Rev. Anal. Numér. Théor. Approx., 20 (1–2) (1991), 24–38.
  • M. Campiti: Korovkin theorems for vector-valued continuous functions, in "Approximation Theory, Spline Functions and Applications" (Internat. Conf., Maratea, May 1991), 293–302, Nato Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 356, Kluwer Acad. Publ., Dordrecht, 1992.
  • M. Campiti: Convergence of nets of monotone operators between cones of set-valued functions, Atti dell’Accademia delle Scienze di Torino, 126 (1992), 39–54.
  • M. Campiti: Convexity-monotone operators in Korovkin theory, Rend. Circ. Mat. Palermo, 33 (1993), 229–238.
  • M. Campiti: Korovkin-type approximation in spaces of vector-valued and set-valued functions, Applicable Analysis, 98 (13) (2019), 2486–2496.
  • L. B. O. Ferguson, M. D. Rusk: Korovkin sets for an operator on a space of continuous functions, Pacific J. Math., 65 (2) (1976), 337–345.
  • W. Heping: Korovkin-type theorem and application, J. Approx. Theory, 132 (2005), 258–264.
  • K. Keimel, W. Roth: A Korovkin type approximation theorem for set-valued functions, Proc. Amer. Math. Soc., 104 (1988), 819–824.
  • K. Keimel, W. Roth: Ordered cones and approximation, Lecture Notes in Mathematics, 1517, Springer-Verlag Berlin Heidelberg, (1992).
  • N. I. Mahmudov: Korovkin-type theorems and applications, Cent. Eur. J. Math., 7 (2) (2009), 348–356.
  • T. Nishishiraho: Convergence of quasi-positive linear operators, Atti Sem. Mat. Fis. Univ. Modena, 29 (1991), 367–374.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Michele Campıtı 0000-0003-3794-1878

Publication Date March 1, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Campıtı, M. (2021). On the Korovkin-type approximation of set-valued continuous functions. Constructive Mathematical Analysis, 4(1), 119-134. https://doi.org/10.33205/cma.863145
AMA Campıtı M. On the Korovkin-type approximation of set-valued continuous functions. CMA. March 2021;4(1):119-134. doi:10.33205/cma.863145
Chicago Campıtı, Michele. “On the Korovkin-Type Approximation of Set-Valued Continuous Functions”. Constructive Mathematical Analysis 4, no. 1 (March 2021): 119-34. https://doi.org/10.33205/cma.863145.
EndNote Campıtı M (March 1, 2021) On the Korovkin-type approximation of set-valued continuous functions. Constructive Mathematical Analysis 4 1 119–134.
IEEE M. Campıtı, “On the Korovkin-type approximation of set-valued continuous functions”, CMA, vol. 4, no. 1, pp. 119–134, 2021, doi: 10.33205/cma.863145.
ISNAD Campıtı, Michele. “On the Korovkin-Type Approximation of Set-Valued Continuous Functions”. Constructive Mathematical Analysis 4/1 (March 2021), 119-134. https://doi.org/10.33205/cma.863145.
JAMA Campıtı M. On the Korovkin-type approximation of set-valued continuous functions. CMA. 2021;4:119–134.
MLA Campıtı, Michele. “On the Korovkin-Type Approximation of Set-Valued Continuous Functions”. Constructive Mathematical Analysis, vol. 4, no. 1, 2021, pp. 119-34, doi:10.33205/cma.863145.
Vancouver Campıtı M. On the Korovkin-type approximation of set-valued continuous functions. CMA. 2021;4(1):119-34.

Cited By

Local Korovkin-type approximation problems for bounded function spaces
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
https://doi.org/10.1007/s13398-024-01589-w