Research Article
BibTex RIS Cite

Isomorphism Problem in a Special Class of Banach Function Algebras and its Application

Year 2021, Volume: 4 Issue: 3, 305 - 317, 16.09.2021
https://doi.org/10.33205/cma.952056

Abstract

Given a weight function τ, we introduce a new class of Banach function algebras with respect to τ,
denoted by C_0b(X, τ ). We provide a complete solution to the isomorphism problem in this class. We further characterize the BSE-extension and the Inoue-Doss ideal associated with it. As an application of our results, we show the
equivalence of the four statements: (i) C_0b(X, τ) is of BSE, (ii) C_0b(X, τ) is of BED, (iii) C_0b(X, τ) is Tauberian and (iv)
τ is bounded.

Thanks

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

  • R. Doss: On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc., 19 (1968), 361-363.
  • J. Inoue, T. Miura, H. Takagi and S.-E. Takahasi: Classification of semisimple commutative Banach algebras of type I, Nihonkai Math. J., 30 (1) (2019), 1-17.
  • J. Inoue, S.-E. Takahasi: Constructions of bounded weak approximate identities for Segal algebras on LCA groups, Acta Sci. Math., 66 (2000), 257-271.
  • J. Inoue, S.-E. Takahasi: On characterizations of the image of the Gelfand transform of commutative Banach algebras, Math. Nachr., 280 (2007), 105-126.
  • J. Inoue, S.-E. Takahasi: Segal algebras in commutative Banach algebras, Rocky Mountain J. Math., 44 (2) (2014), 539-589.
  • J. Inoue, S.-E. Takahasi: A construction of a BSE-algebra of type I which is isomorphic to no C∗-algebras, Rocky Mountain J. Math., 47 (8) (2017), 2693-2697.
  • J. Inoue, S.-E. Takahasi: Banach function algebras of n-times continuously differentiable functions on Rd vanishing at infinity and their BSE-extensions, J. Korean Math. Soc., 56 (5) (2019), 1333-1354.
  • C. A. Jones, C. D. Lahr: Weak and norm approximate identities are different, Pac. J. Math., 72 (1977), 99-104.
  • E. Kaniuth, A. Ülger: The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier Stieltjes algebras, Trans. Amer. Math. Soc., 362 (2010), 4331-4356.
  • H. Reiter: L1-algebras and Segal algebras, Lect. Notes Math., 231, Springer-Verlag, Berlin (1971).
  • H. Reiter, J. D. Stegeman: Classical Harmonic Analysis and Locally compact groups, Oxford Science Publications, Oxford (2000).
  • C. E. Rickart: General Theory of Banach Algebras, D. Van Nostrand Company, Inc. Princeton, New Jersey, Toronto, London, New York (1960).
  • S.-E. Takahasi, O. Hatori: Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein type-theorem, Proc. Amer. Math. Soc., 110 (1) (1990), 149-158.
Year 2021, Volume: 4 Issue: 3, 305 - 317, 16.09.2021
https://doi.org/10.33205/cma.952056

Abstract

References

  • R. Doss: On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc., 19 (1968), 361-363.
  • J. Inoue, T. Miura, H. Takagi and S.-E. Takahasi: Classification of semisimple commutative Banach algebras of type I, Nihonkai Math. J., 30 (1) (2019), 1-17.
  • J. Inoue, S.-E. Takahasi: Constructions of bounded weak approximate identities for Segal algebras on LCA groups, Acta Sci. Math., 66 (2000), 257-271.
  • J. Inoue, S.-E. Takahasi: On characterizations of the image of the Gelfand transform of commutative Banach algebras, Math. Nachr., 280 (2007), 105-126.
  • J. Inoue, S.-E. Takahasi: Segal algebras in commutative Banach algebras, Rocky Mountain J. Math., 44 (2) (2014), 539-589.
  • J. Inoue, S.-E. Takahasi: A construction of a BSE-algebra of type I which is isomorphic to no C∗-algebras, Rocky Mountain J. Math., 47 (8) (2017), 2693-2697.
  • J. Inoue, S.-E. Takahasi: Banach function algebras of n-times continuously differentiable functions on Rd vanishing at infinity and their BSE-extensions, J. Korean Math. Soc., 56 (5) (2019), 1333-1354.
  • C. A. Jones, C. D. Lahr: Weak and norm approximate identities are different, Pac. J. Math., 72 (1977), 99-104.
  • E. Kaniuth, A. Ülger: The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier Stieltjes algebras, Trans. Amer. Math. Soc., 362 (2010), 4331-4356.
  • H. Reiter: L1-algebras and Segal algebras, Lect. Notes Math., 231, Springer-Verlag, Berlin (1971).
  • H. Reiter, J. D. Stegeman: Classical Harmonic Analysis and Locally compact groups, Oxford Science Publications, Oxford (2000).
  • C. E. Rickart: General Theory of Banach Algebras, D. Van Nostrand Company, Inc. Princeton, New Jersey, Toronto, London, New York (1960).
  • S.-E. Takahasi, O. Hatori: Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein type-theorem, Proc. Amer. Math. Soc., 110 (1) (1990), 149-158.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Sın-eı Takahası This is me 0000-0002-7936-2332

Kiyoshi Shirayanagi 0000-0001-8123-3823

Makoto Tsukada This is me 0000-0001-5405-8900

Publication Date September 16, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Takahası, S.-e., Shirayanagi, K., & Tsukada, M. (2021). Isomorphism Problem in a Special Class of Banach Function Algebras and its Application. Constructive Mathematical Analysis, 4(3), 305-317. https://doi.org/10.33205/cma.952056
AMA Takahası Se, Shirayanagi K, Tsukada M. Isomorphism Problem in a Special Class of Banach Function Algebras and its Application. CMA. September 2021;4(3):305-317. doi:10.33205/cma.952056
Chicago Takahası, Sın-eı, Kiyoshi Shirayanagi, and Makoto Tsukada. “Isomorphism Problem in a Special Class of Banach Function Algebras and Its Application”. Constructive Mathematical Analysis 4, no. 3 (September 2021): 305-17. https://doi.org/10.33205/cma.952056.
EndNote Takahası S-e, Shirayanagi K, Tsukada M (September 1, 2021) Isomorphism Problem in a Special Class of Banach Function Algebras and its Application. Constructive Mathematical Analysis 4 3 305–317.
IEEE S.-e. Takahası, K. Shirayanagi, and M. Tsukada, “Isomorphism Problem in a Special Class of Banach Function Algebras and its Application”, CMA, vol. 4, no. 3, pp. 305–317, 2021, doi: 10.33205/cma.952056.
ISNAD Takahası, Sın-eı et al. “Isomorphism Problem in a Special Class of Banach Function Algebras and Its Application”. Constructive Mathematical Analysis 4/3 (September 2021), 305-317. https://doi.org/10.33205/cma.952056.
JAMA Takahası S-e, Shirayanagi K, Tsukada M. Isomorphism Problem in a Special Class of Banach Function Algebras and its Application. CMA. 2021;4:305–317.
MLA Takahası, Sın-eı et al. “Isomorphism Problem in a Special Class of Banach Function Algebras and Its Application”. Constructive Mathematical Analysis, vol. 4, no. 3, 2021, pp. 305-17, doi:10.33205/cma.952056.
Vancouver Takahası S-e, Shirayanagi K, Tsukada M. Isomorphism Problem in a Special Class of Banach Function Algebras and its Application. CMA. 2021;4(3):305-17.