Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 4, 180 - 195, 15.12.2024
https://doi.org/10.33205/cma.1563047

Abstract

Project Number

BG-RRP-2.004-0008

References

  • A. M. Acu, P. Agrawal: Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2) (2019), 125–136.
  • A. M. Acu, I. Rasa: New estimates for the differences of positive linear operators, Numer. Algorithms, 73 (3) (2016), 775–789.
  • H. Berens, Y. Xu: On Bernstein-Durrmeyer polynomials with Jacobi weights, In Approximation Theory and Functional Analysis, (Edited by C. K. Chui), pp. 25–46, Acad. Press, Boston (1991).
  • L. Beutel, H. Gonska and D. Kacsó: Variation-diminishing splines revised, In Proceedings of International Symposium on Numerical Analysis and Approximation Theory, (Edited by R. Trâmbi¸ta¸s), pp. 54–75, Presa Universitar˘a Clujean˘a, Cluj-Napoka (2002).
  • W. Chen: On the modified Bernstein-Durrmeyer operator, Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou (China), (1987).
  • Z. Ditzian, K. G. Ivanov: Strong converse inequalities, J. Anal. Math., 61 (1993), 61–111.
  • H. Gonska, R. P˘alt˘anea: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (135) (2010), 783–799.
  • H. Gonska, R. P˘alt˘anea: Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913–922.
  • T. N. T. Goodman, A. Sharma: A modified Bernstein-Schoenberg operator, In Constructive Theory of Functions, Varna 1987, (Edited by Bl. Sendov et al.), pp. 166–173, Publ. House Bulg. Acad. of Sci., Sofia, (1988).
  • T. N. T. Goodman, A. Sharma: A Bernstein-type operator on the simplex, Math. Balkanica (New Series), 5 (2) (1991), 129–145.
  • K. G. Ivanov, P. E. Parvanov: Weighted approximation by the Goodman-Sharma operators, East J. Approx., 15 (4) (2009), 473–486.
  • G. G. Lorentz: Bernstein Polynomials, Mathematical Expositions 8, University of Toronto Press, (1953).
  • R. P˘alt˘anea: A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 5 (2007), 109–117.
  • P. E. Parvanov, B. D. Popov: The limit case of Bernstein’s operators with Jacobi weights, Math. Balkanica (N.S.), 8 (2–3) (1994), 165–177.

Higher order approximation of functions by modified Goodman-Sharma operators

Year 2024, Volume: 7 Issue: 4, 180 - 195, 15.12.2024
https://doi.org/10.33205/cma.1563047

Abstract

Here we study the approximation properties of a modified Goodman-Sharma operator recently considered by Acu and Agrawal in [1]. This operator is linear but not positive. It has the advantage of a higher order of approximation of functions compared with the Goodman-Sharma operator. We prove direct and strong converse theorems in terms of a related K-functional.

Project Number

BG-RRP-2.004-0008

Thanks

This study is financed by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project No. BG-RRP-2.004-0008.

References

  • A. M. Acu, P. Agrawal: Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2) (2019), 125–136.
  • A. M. Acu, I. Rasa: New estimates for the differences of positive linear operators, Numer. Algorithms, 73 (3) (2016), 775–789.
  • H. Berens, Y. Xu: On Bernstein-Durrmeyer polynomials with Jacobi weights, In Approximation Theory and Functional Analysis, (Edited by C. K. Chui), pp. 25–46, Acad. Press, Boston (1991).
  • L. Beutel, H. Gonska and D. Kacsó: Variation-diminishing splines revised, In Proceedings of International Symposium on Numerical Analysis and Approximation Theory, (Edited by R. Trâmbi¸ta¸s), pp. 54–75, Presa Universitar˘a Clujean˘a, Cluj-Napoka (2002).
  • W. Chen: On the modified Bernstein-Durrmeyer operator, Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou (China), (1987).
  • Z. Ditzian, K. G. Ivanov: Strong converse inequalities, J. Anal. Math., 61 (1993), 61–111.
  • H. Gonska, R. P˘alt˘anea: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions, Czechoslovak Math. J., 60 (135) (2010), 783–799.
  • H. Gonska, R. P˘alt˘anea: Quantitative convergence theorems for a class of Bernstein-Durrmeyer operators preserving linear functions, Ukrainian Math. J., 62 (2010), 913–922.
  • T. N. T. Goodman, A. Sharma: A modified Bernstein-Schoenberg operator, In Constructive Theory of Functions, Varna 1987, (Edited by Bl. Sendov et al.), pp. 166–173, Publ. House Bulg. Acad. of Sci., Sofia, (1988).
  • T. N. T. Goodman, A. Sharma: A Bernstein-type operator on the simplex, Math. Balkanica (New Series), 5 (2) (1991), 129–145.
  • K. G. Ivanov, P. E. Parvanov: Weighted approximation by the Goodman-Sharma operators, East J. Approx., 15 (4) (2009), 473–486.
  • G. G. Lorentz: Bernstein Polynomials, Mathematical Expositions 8, University of Toronto Press, (1953).
  • R. P˘alt˘anea: A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 5 (2007), 109–117.
  • P. E. Parvanov, B. D. Popov: The limit case of Bernstein’s operators with Jacobi weights, Math. Balkanica (N.S.), 8 (2–3) (1994), 165–177.
There are 14 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Rumen Uluchev 0000-0002-9122-7088

Ivan Gadjev 0000-0002-4444-9921

Parvan Parvanov 0000-0002-0942-5692

Project Number BG-RRP-2.004-0008
Early Pub Date December 9, 2024
Publication Date December 15, 2024
Submission Date October 7, 2024
Acceptance Date December 6, 2024
Published in Issue Year 2024 Volume: 7 Issue: 4

Cite

APA Uluchev, R., Gadjev, I., & Parvanov, P. (2024). Higher order approximation of functions by modified Goodman-Sharma operators. Constructive Mathematical Analysis, 7(4), 180-195. https://doi.org/10.33205/cma.1563047
AMA Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. December 2024;7(4):180-195. doi:10.33205/cma.1563047
Chicago Uluchev, Rumen, Ivan Gadjev, and Parvan Parvanov. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis 7, no. 4 (December 2024): 180-95. https://doi.org/10.33205/cma.1563047.
EndNote Uluchev R, Gadjev I, Parvanov P (December 1, 2024) Higher order approximation of functions by modified Goodman-Sharma operators. Constructive Mathematical Analysis 7 4 180–195.
IEEE R. Uluchev, I. Gadjev, and P. Parvanov, “Higher order approximation of functions by modified Goodman-Sharma operators”, CMA, vol. 7, no. 4, pp. 180–195, 2024, doi: 10.33205/cma.1563047.
ISNAD Uluchev, Rumen et al. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis 7/4 (December 2024), 180-195. https://doi.org/10.33205/cma.1563047.
JAMA Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. 2024;7:180–195.
MLA Uluchev, Rumen et al. “Higher Order Approximation of Functions by Modified Goodman-Sharma Operators”. Constructive Mathematical Analysis, vol. 7, no. 4, 2024, pp. 180-95, doi:10.33205/cma.1563047.
Vancouver Uluchev R, Gadjev I, Parvanov P. Higher order approximation of functions by modified Goodman-Sharma operators. CMA. 2024;7(4):180-95.