Research Article
BibTex RIS Cite

Investigation of the relationship between exportin5 (XPO5) polymorphism and gastric cancer

Year 2021, Volume: 43 Issue: 3, 254 - 262, 30.09.2021
https://doi.org/10.7197/cmj.907003

Abstract

Objective: We aimed to analyzed the association between gastric cancer and polymorphism of XPO5 gene.
Method: The polymorphism in the XPO5 gene (rs11544382) was determined in 120 individuals (60 gastric cancer patients; 60 healthy controls) using Real-Time PCR method.
Results: The comparison of gastric cancer patients and controls revealed a statistically significant relationship for alcoholic drink consumption (p<0.05).The relationship between XPO5 gene (rs11544382) polymorphism and gastric cancer was statistically not significant. There was no a statistically significant relationship between mutant (GG) genotype with both wild type (AA) and heterozygous (AG) polymorphic genotypes when evaluated in XPO5 polymorphism gastric cancer patients and control groups (χ2:0.12, p=0.729). The heterozygous (AG) was dominant in gastric cancers patients and control subjects, 93.3 and 91.7% respectively.
Conclusions: This study provides information about allele
and genotype frequency distribution of XPO5 gene polymorphism (rs11544382) in Turkish At the same time, AG genotype was found to be dominant in gastric cancer patients and their controls.

Supporting Institution

-

Project Number

-

References

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal For Clinicians 2018; 68: 394-424.
  • 2. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D. et al. Gastric adenocarcinoma. Nature Reviews Disease Primers 2017; 3.1: 1-19.
  • 3. Majidi A, Majidi S, Salimzadeh S, Khazaee-Pool M, Sadjadi A. et al. Cancer screening awareness and practice in a middle income country; A Systematic Review from Iran. APJCP 2017; 18: 3187.
  • 4. Guner A. Recent trends of gastric cancer treatment in Turkey. Transl Gastroenterol Hepatol 2017; 2.
  • 5. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R. et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 2018; 10: 239.
  • 6. Buckland G, Travier N, Huerta J, Bueno-de-Mesquita H, Siersema P. et al. Healthy lifestyle index and risk of gastric adenocarcinoma in the EPIC cohort study. Int J Cancer 2015; 137: 598-606.
  • 7. Take S, Mizuno M, Ishiki K, Yoshida T, Ohara N.et al. The long-term risk of gastric cancer after the successful eradication of Helicobacter pylori. J. Gastroenterol 2011; 46: 318-324.
  • 8. Qiu L-X, Cheng L, He J, Zhou Z-R, Wang M-Y. et al. PSCA polymorphisms and gastric cancer susceptibility in an Eastern Chinese population. Oncotarget 2016; 7: 9420.
  • 9. Goldstein DB, Ahmadi KR, Weale ME, Wood NW. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet 2003; 19: 615-622.
  • 10. Xie W-Q, Tan S-Y, Wang X-F. MiR-146a rs2910164 polymorphism increases risk of gastric cancer: a meta-analysis. World J Gastroentero 2014; 20: 15440.
  • 11. Treiber T, Treiber N, Meister G. Regulation of microR NA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2019; 20: 5-20.
  • 12. Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. Rna. 2019; 25: 1-16.
  • 13. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17: 47.
  • 14. Patrão AS, Dias F, Teixeira AL, Maurício J, Medeiros R. XPO5 genetic polymorphisms in cancer risk and prognosis. Pharmacogenomics. 2018; 19: 799-808.
  • 15. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011 12: 861.
  • 16. Xie Y, Wang Y, Zhao Y, Guo Z. Single-nucleotide polymorphisms of microRNA processing machinery genes are associated with risk for gastric cancer. Onco Targets Ther 2015; 8: 567.
  • 17. Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.
  • 18. Zhao L, Zhang Z, Lin J, Cao L, He B. et al. Complement receptor 1 genetic variants contribute to the susceptibility to gastric cancer in Chinese population. J. Cancer 2015; 6: 525.
  • 19. Song X, Zhong H, Wu Q, Wang M, Zhou J. et al. Association between SNPs in microRNA machinery genes and gastric cancer susceptibility, invasion, and metastasis in Chinese Han population. Oncotarget 2017; 8: 86435.
  • 20. Chiurillo MA. Role of gene polymorphisms in gastric cancer and its precursor lesions: current knowledge and perspectives in Latin American countries. World J Gastroentero 2014; 20: 4503.
  • 21. Atabey M, Taş A, Ağbektaş T, Bostanci ME, Topcu Ö. Et al. Investigation of the relationship between β2-adrenergic receptor (β2-AR) polymorphism and gastric cancer. Cumhuriyet Medical Journal 2018; 40: 284-290.
  • 22. Peng S, Kuang Z, Sheng C, Zhang Y, Xu H. et al. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Digest Dis Sci 2010; 55: 2288-2293.
  • 23. Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol 2013; 48: 51-68.
  • 24. Hubner RA, Houlston RS. Single nucleotide polymorphisms and cancer susceptibility. The molecular basis of human cancer: Springer; 2017. p. 231-239.
  • 25. Mishra PJ, Mishra PJ, Banerjee D, Bertino JR. MirSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle. 2008; 7: 853-858.
  • 26. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 2010; 10: 389.
  • 27. Huang J-T, Wang J, Srivastava V, Sen S, Liu S-M. MicroRNA machinery genes as novel biomarkers for cancer. Front oncol 2014; 4: 113.
  • 28. Leaderer D, Hoffman AE, Zheng T, Fu A, Weidhaas J. et al. Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int. J. Mol. Epidemiology Gene 2011; 2: 9.
  • 29. Liu S, An J, Lin J, Liu Y, Bao L. et al. Single nucleotide polymorphisms of microRNA processing machinery genes and outcome of hepatocellular carcinoma. PloS one 2014; 9: 92791.
  • 30. Shigeyasu K, Okugawa Y, Toden S, Boland CR, Goel A. Exportin-5 functions as an oncogene and a potential therapeutic target in colorectal cancer. Clin Cancer Res 2017; 23: 1312-1322.
  • 31. Ott CA, Linck L, Kremmer E, Meister G, Bosserhoff AK. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells. Oncotarget 2016; 7:62292.
  • 32. Tas A, Atabey M, Caglayan G, Bostanci ME, Sehin BS. et al. Investigation of the association between the MDM2 T309G polymorphism and gastric cancer. Biomed Rep 2017; 7: 469-773.
  • 33. Malhotra P, Read GH, Weidhaas JB. Breast Cancer and miR-SNPs: The Importance of miR Germ-Line Genetics. Non-coding RNA. 2019; 5: 27.
Year 2021, Volume: 43 Issue: 3, 254 - 262, 30.09.2021
https://doi.org/10.7197/cmj.907003

Abstract

Project Number

-

References

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal For Clinicians 2018; 68: 394-424.
  • 2. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D. et al. Gastric adenocarcinoma. Nature Reviews Disease Primers 2017; 3.1: 1-19.
  • 3. Majidi A, Majidi S, Salimzadeh S, Khazaee-Pool M, Sadjadi A. et al. Cancer screening awareness and practice in a middle income country; A Systematic Review from Iran. APJCP 2017; 18: 3187.
  • 4. Guner A. Recent trends of gastric cancer treatment in Turkey. Transl Gastroenterol Hepatol 2017; 2.
  • 5. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R. et al. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 2018; 10: 239.
  • 6. Buckland G, Travier N, Huerta J, Bueno-de-Mesquita H, Siersema P. et al. Healthy lifestyle index and risk of gastric adenocarcinoma in the EPIC cohort study. Int J Cancer 2015; 137: 598-606.
  • 7. Take S, Mizuno M, Ishiki K, Yoshida T, Ohara N.et al. The long-term risk of gastric cancer after the successful eradication of Helicobacter pylori. J. Gastroenterol 2011; 46: 318-324.
  • 8. Qiu L-X, Cheng L, He J, Zhou Z-R, Wang M-Y. et al. PSCA polymorphisms and gastric cancer susceptibility in an Eastern Chinese population. Oncotarget 2016; 7: 9420.
  • 9. Goldstein DB, Ahmadi KR, Weale ME, Wood NW. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet 2003; 19: 615-622.
  • 10. Xie W-Q, Tan S-Y, Wang X-F. MiR-146a rs2910164 polymorphism increases risk of gastric cancer: a meta-analysis. World J Gastroentero 2014; 20: 15440.
  • 11. Treiber T, Treiber N, Meister G. Regulation of microR NA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2019; 20: 5-20.
  • 12. Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. Rna. 2019; 25: 1-16.
  • 13. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17: 47.
  • 14. Patrão AS, Dias F, Teixeira AL, Maurício J, Medeiros R. XPO5 genetic polymorphisms in cancer risk and prognosis. Pharmacogenomics. 2018; 19: 799-808.
  • 15. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011 12: 861.
  • 16. Xie Y, Wang Y, Zhao Y, Guo Z. Single-nucleotide polymorphisms of microRNA processing machinery genes are associated with risk for gastric cancer. Onco Targets Ther 2015; 8: 567.
  • 17. Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.
  • 18. Zhao L, Zhang Z, Lin J, Cao L, He B. et al. Complement receptor 1 genetic variants contribute to the susceptibility to gastric cancer in Chinese population. J. Cancer 2015; 6: 525.
  • 19. Song X, Zhong H, Wu Q, Wang M, Zhou J. et al. Association between SNPs in microRNA machinery genes and gastric cancer susceptibility, invasion, and metastasis in Chinese Han population. Oncotarget 2017; 8: 86435.
  • 20. Chiurillo MA. Role of gene polymorphisms in gastric cancer and its precursor lesions: current knowledge and perspectives in Latin American countries. World J Gastroentero 2014; 20: 4503.
  • 21. Atabey M, Taş A, Ağbektaş T, Bostanci ME, Topcu Ö. Et al. Investigation of the relationship between β2-adrenergic receptor (β2-AR) polymorphism and gastric cancer. Cumhuriyet Medical Journal 2018; 40: 284-290.
  • 22. Peng S, Kuang Z, Sheng C, Zhang Y, Xu H. et al. Association of microRNA-196a-2 gene polymorphism with gastric cancer risk in a Chinese population. Digest Dis Sci 2010; 55: 2288-2293.
  • 23. Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol 2013; 48: 51-68.
  • 24. Hubner RA, Houlston RS. Single nucleotide polymorphisms and cancer susceptibility. The molecular basis of human cancer: Springer; 2017. p. 231-239.
  • 25. Mishra PJ, Mishra PJ, Banerjee D, Bertino JR. MirSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle. 2008; 7: 853-858.
  • 26. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 2010; 10: 389.
  • 27. Huang J-T, Wang J, Srivastava V, Sen S, Liu S-M. MicroRNA machinery genes as novel biomarkers for cancer. Front oncol 2014; 4: 113.
  • 28. Leaderer D, Hoffman AE, Zheng T, Fu A, Weidhaas J. et al. Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int. J. Mol. Epidemiology Gene 2011; 2: 9.
  • 29. Liu S, An J, Lin J, Liu Y, Bao L. et al. Single nucleotide polymorphisms of microRNA processing machinery genes and outcome of hepatocellular carcinoma. PloS one 2014; 9: 92791.
  • 30. Shigeyasu K, Okugawa Y, Toden S, Boland CR, Goel A. Exportin-5 functions as an oncogene and a potential therapeutic target in colorectal cancer. Clin Cancer Res 2017; 23: 1312-1322.
  • 31. Ott CA, Linck L, Kremmer E, Meister G, Bosserhoff AK. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells. Oncotarget 2016; 7:62292.
  • 32. Tas A, Atabey M, Caglayan G, Bostanci ME, Sehin BS. et al. Investigation of the association between the MDM2 T309G polymorphism and gastric cancer. Biomed Rep 2017; 7: 469-773.
  • 33. Malhotra P, Read GH, Weidhaas JB. Breast Cancer and miR-SNPs: The Importance of miR Germ-Line Genetics. Non-coding RNA. 2019; 5: 27.
There are 33 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Surgical Science Research Articles
Authors

Abdisa Tufa 0000-0003-2196-6835

Ayça Taş 0000-0002-7132-1325

Tuğba Ağbektaş 0000-0003-3433-8870

Ömer Topcu 0000-0002-1017-9820

Solomon Genet 0000-0002-5433-0107

Yavuz Siliğ 0000-0002-0562-7457

Project Number -
Publication Date September 30, 2021
Acceptance Date September 26, 2021
Published in Issue Year 2021Volume: 43 Issue: 3

Cite

AMA Tufa A, Taş A, Ağbektaş T, Topcu Ö, Genet S, Siliğ Y. Investigation of the relationship between exportin5 (XPO5) polymorphism and gastric cancer. CMJ. September 2021;43(3):254-262. doi:10.7197/cmj.907003