Research Article
BibTex RIS Cite

Polimerle Boya Gideriminde Yeni Bir Yaklaşım: Karides Kitini İle Sulu Çözeltiden Asit Portakal 12'nin Giderimi

Year 2022, Volume: 6 Issue: 2, 172 - 177, 31.12.2022
https://doi.org/10.31594/commagene.1149575

Abstract

Kitin, doğal olarak bol miktarda bulunan bir mukopolisakkarit olup kabukluların, böceklerin vb. canlıların destekleyici malzemesidir. Kitin ve ana türevi kitosan, toksik olmamaları, biyolojik olarak parçalanabilirlikleri, biyouyumlulukları, antimikrobiyal ve antioksidan özelliklerinden dolayı tıp, eczacılık, biyoteknoloji, çevre ve gıda mühendisliğinde çeşitli uygulamalara sahiptir. Burada, tekstilde en çok kullanılan azo boya maddelerden biri olan Asit Portakal 12'nin bir polimer olan karides kitini vasıtasıyla sulu çözeltilerden uzaklaştırılması üzerine araştırma yapılmıştır. En uygun koşulları belirlemek için farklı parametreler (pH dereceleri, kitin miktarı, boya miktarı, temas süresi) çalışılmıştır. Kitin, pH 5 koşullarında kullanılarak Asit Portakal 12'nin uzaklaştırılmasında en verimli olarak tespit edilmiştir. Boyanın kitin üzerine adsorpsiyonu Langmuir izotermine ve yalancı-ikinci-dereceden kinetik modele uymuştur.

References

  • Ajaz, M., Shakeel, S., & Rehman A. (2020). Microbial use for azo dye degradation—a strategy for dye bioremediation. International Microbiology, 23, 149–159. https://doi.org/10.1007/s10123-019-00103-2
  • Aljeboree, A.M., Alshirifi, A.N., & Alkaim, A.F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10(2), 3381-3393. https://doi.org/10.1016/j.arabjc.2014.01.020
  • Arica, M.Y., & Bayramoǧlu, G. (2007). Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. Journal of Hazardous Materials, 149(2), 499-507. https://doi.org/10.1016/j.jhazmat.2007.04.021
  • Bayramoğlu, G., & Yilmaz, M. (2018). Azo dye removal using free and immobilized fungal biomasses: Isotherms, Kinetics and thermodynamic studies. Fibers and Polymers, 19, 877–886. https://doi.org/10.1007/s12221-018-7875-y
  • Benkhaya, S., M’rabet, S., & El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), e03271. https://doi.org/10.1016/j.heliyon.2020.e03271
  • Boran, F. (2022). Dye Removing with Dry and Wet Forms of Pure Bacterial Cellulose Produced by Gluconacetobacter xylinus. Commagene Journal of Biology, 6(1), 1-5. https://doi.org/10.31594/commagene.1037538
  • Cheung, W.H., Szeto, Y.S., & McKay, G. (2009). Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Bioresource Technology, 100(3), 1143-1148. https://doi.org/10.1016/j.biortech.2008.07.071
  • Cho, D.W., Jeon, B.H., Chon, C.M., Schwartz, F.W., Jeong, Y., & Song, H. (2015). Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution. Journal of Industrial and Engineering Chemistry, 28, 60-66. https://doi.org/10.1016/j.jiec.2015.01.023
  • Desbrières, J., & Guibal, E. (2018). Chitosan for wastewater treatment. Polymer International, 67(1), 7-14. https://doi.org/10.1002/pi.5464
  • Ergene, A., Ada, K., Tan, S., & Katircioǧlu, H. (2009). Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: Equilibrium and kinetic modeling studies. Desalination, 249(3), 1308-1314. https://doi.org/10.1016/j.desal.2009.06.027
  • Goswami, R.K., Mehariya, S., Verma, P., Lavecchia, R., & Zuorro A. (2021). Microalgae-based biorefineries for sustainable resource recovery from wastewater. Journal of Water Process Engineering, 40, 101747. https://doi.org/10.1016/j.jwpe.2020.101747
  • Hameed, A.B., Dekhyl, A.B., & Alabdraba, W.M.S. (2022). Removing the Acid Orange 12 Azo Dye from Aqueous Solution Using Sodium Hypochlorite, A Kinetic and Thermodynamic Study. IOP Conference Series: Earth and Environmental Science, 961, 012056. https://doi.org/10.1088/1755-1315/961/1/012056
  • Herrera-González, A.M., Caldera-Villalobos, M., & Peláez-Cid, A.A. (2019). Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. Journal of Environmental Management, 234, 237-244. https://doi.org/10.1016/j.jenvman.2019.01.012
  • Hosseini, F., Sadighian, S., Hosseini-Monfared, H., & Mahmoodi, N.M. (2016). Dye removal and kinetics of adsorption by magnetic chitosan nanoparticles. Desalination and Water Treatment, 57, 51. https://doi.org/10.1080/19443994.2016.1143879
  • Huang, J., Liu, D., Lu, J., Wang, H., Wei, X., & Liu, J. (2016). Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: Kinetics, capacity and mechanism studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 242-248. https://doi.org/10.1016/j.colsurfa.2015.11.071
  • Hussain, S., Kamran, M., Khan, S.A., Shaheen, K., Shah, Z., Suo, H., …, & Ghani, U. (2021). Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. International Journal of Biological Macromolecules, 168, 383-394. https://doi.org/10.1016/j.ijbiomac.2020.12.054
  • Joshi, M,, Bansal, R., & Purwar, R. (2004). Colour removal from textile effluents. International Journal of Fibre and Textile Research, 29, 239-259.
  • Katheresan, V., Kansedo, J., & Lau, S.Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060
  • Kaya, M., Baublys, V., Sargin, I., Šatkauskienė, I., Paulauskas, A., Akyuz, B., …, & Yurtmen, H. (2016). How taxonomic relations affect the physicochemical properties of chitin. Food Biophysics, 11, 10-19. https://doi.org/10.1007/s11483-015-9404-5
  • Kumar, R.M.N.V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46 1–27. http://doi.org/10.1016/S1381-5148(00)00038-9
  • Liu, L., Gao, Z.Y., Su, X.P., Chen, X., Jiang, L., & Yao, J.M. (2015). Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-based Bioadsorbent. Acs Sustainable Chemistry & Engineering, 3, 432-442. https://doi.org/10.1021/sc500848m
  • Maderova, Z., Baldikova, E., Pospiskova, K., Safarik, I., & Safarikova, M. (2016). Removal of dyes by adsorption on magnetically modified activated sludge. International Journal of Environmental Science and Technology, 13, 1653–1664. https://doi.org/10.1007/s13762-016-1001-8
  • McKay, G., Blair, H.S., & Gardner, J. R. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27, 3043-3057. https://doi.org/10.1002/app.1982.070270827
  • Millicent Mabel, M., Sundararaman, T.R., Parthasarathy, N., & Rajkumar, J. (2019). Chitin beads from peneaus sp. shells as a biosorbent for methylene blue dye removal. Polish Journal of Environmental Studies, 28(4), 2253-2259. https://doi.org/10.15244/pjoes/90359
  • Ratnamala, G.M., Shetty, K.V., & Srinikethan, G. (2012). Removal of remazol brilliant blue dye from dye-contaminated water by adsorption using red mud: Equilibrium, kinetic, and thermodynamic studies. Water, Air, & Soil Pollution, 223, 6187-6199. https://doi.org/10.1007/s11270-012-1349-4
  • Sen, S.K., Raut, S., Bandyopadhyay, P., & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30(3), 112-133. https://doi.org/10.1016/j.fbr.2016.06.003
  • Stingley, R.L., Zou, W., Heinze, T.M., Chen, H., & Cerniglia, C.E. (2010). Metabolism of azo dyes by human skin microbiota. Journal of Medical Microbiology, 59(1), 108-114. https://doi.org/10.1099/jmm.0.012617-0
  • Wong, Y.C., Szeto, Y.S., Cheung, W.H., & McKay, G. (2003). Equilibrium studies for acid dye adsorption onto chitosan. Langmuir, 19, 7888-7894. https://doi.org/10.1021/la030064y
  • Yadav, A.K., Jena, S., Acharya, B.C., & Mishra, B.K. (2012). Removal of azo dye in innovative constructed wetlands: Influence of iron scrap and sulfate reducing bacterial enrichment. Ecological Engineering, 49, 53-58. https://doi.org/10.1016/j.ecoleng.2012.08.032
  • Zhou, L., Jin, J., Liu, Z., Liang, X., & Shang, C. (2011). Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. Journal of Hazardous Materials, 185(2-3), 1045-1052. https://doi.org/10.1016/j.jhazmat.2010.10.012

A New Approach for Dye Removal with a Polymer: Removal of Acid Orange 12 from Aqueous Solution with Shrimp Chitin

Year 2022, Volume: 6 Issue: 2, 172 - 177, 31.12.2022
https://doi.org/10.31594/commagene.1149575

Abstract

Chitin, a naturally abundant mucopolysaccharide, is the supporting material of crustaceans, insects, and etc. Chitin and its main derivative chitosan have various applications in medicine, pharmacy, biotechnology, environment, and food engineering because of their nontoxicity, biodegradability, biocompatibility, antimicrobial, and antioxidant properties. Here, research was conducted on the removal of Acid Orange 12, which is among the most used azo dyes in textiles, from aqueous solutions using shrimp chitin, a polymer. To determine the most suitable conditions, different parameters (pH degrees, amount of chitin, amount of dye, contact time) were studied. Chitin was determined to be the most efficient in removing Acid Orange 12 using pH 5 conditions. The adsorption of dye onto chitin followed the Langmuir isotherm and pseudo-second-order kinetic model.

References

  • Ajaz, M., Shakeel, S., & Rehman A. (2020). Microbial use for azo dye degradation—a strategy for dye bioremediation. International Microbiology, 23, 149–159. https://doi.org/10.1007/s10123-019-00103-2
  • Aljeboree, A.M., Alshirifi, A.N., & Alkaim, A.F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10(2), 3381-3393. https://doi.org/10.1016/j.arabjc.2014.01.020
  • Arica, M.Y., & Bayramoǧlu, G. (2007). Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. Journal of Hazardous Materials, 149(2), 499-507. https://doi.org/10.1016/j.jhazmat.2007.04.021
  • Bayramoğlu, G., & Yilmaz, M. (2018). Azo dye removal using free and immobilized fungal biomasses: Isotherms, Kinetics and thermodynamic studies. Fibers and Polymers, 19, 877–886. https://doi.org/10.1007/s12221-018-7875-y
  • Benkhaya, S., M’rabet, S., & El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), e03271. https://doi.org/10.1016/j.heliyon.2020.e03271
  • Boran, F. (2022). Dye Removing with Dry and Wet Forms of Pure Bacterial Cellulose Produced by Gluconacetobacter xylinus. Commagene Journal of Biology, 6(1), 1-5. https://doi.org/10.31594/commagene.1037538
  • Cheung, W.H., Szeto, Y.S., & McKay, G. (2009). Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Bioresource Technology, 100(3), 1143-1148. https://doi.org/10.1016/j.biortech.2008.07.071
  • Cho, D.W., Jeon, B.H., Chon, C.M., Schwartz, F.W., Jeong, Y., & Song, H. (2015). Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution. Journal of Industrial and Engineering Chemistry, 28, 60-66. https://doi.org/10.1016/j.jiec.2015.01.023
  • Desbrières, J., & Guibal, E. (2018). Chitosan for wastewater treatment. Polymer International, 67(1), 7-14. https://doi.org/10.1002/pi.5464
  • Ergene, A., Ada, K., Tan, S., & Katircioǧlu, H. (2009). Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: Equilibrium and kinetic modeling studies. Desalination, 249(3), 1308-1314. https://doi.org/10.1016/j.desal.2009.06.027
  • Goswami, R.K., Mehariya, S., Verma, P., Lavecchia, R., & Zuorro A. (2021). Microalgae-based biorefineries for sustainable resource recovery from wastewater. Journal of Water Process Engineering, 40, 101747. https://doi.org/10.1016/j.jwpe.2020.101747
  • Hameed, A.B., Dekhyl, A.B., & Alabdraba, W.M.S. (2022). Removing the Acid Orange 12 Azo Dye from Aqueous Solution Using Sodium Hypochlorite, A Kinetic and Thermodynamic Study. IOP Conference Series: Earth and Environmental Science, 961, 012056. https://doi.org/10.1088/1755-1315/961/1/012056
  • Herrera-González, A.M., Caldera-Villalobos, M., & Peláez-Cid, A.A. (2019). Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. Journal of Environmental Management, 234, 237-244. https://doi.org/10.1016/j.jenvman.2019.01.012
  • Hosseini, F., Sadighian, S., Hosseini-Monfared, H., & Mahmoodi, N.M. (2016). Dye removal and kinetics of adsorption by magnetic chitosan nanoparticles. Desalination and Water Treatment, 57, 51. https://doi.org/10.1080/19443994.2016.1143879
  • Huang, J., Liu, D., Lu, J., Wang, H., Wei, X., & Liu, J. (2016). Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: Kinetics, capacity and mechanism studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 242-248. https://doi.org/10.1016/j.colsurfa.2015.11.071
  • Hussain, S., Kamran, M., Khan, S.A., Shaheen, K., Shah, Z., Suo, H., …, & Ghani, U. (2021). Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. International Journal of Biological Macromolecules, 168, 383-394. https://doi.org/10.1016/j.ijbiomac.2020.12.054
  • Joshi, M,, Bansal, R., & Purwar, R. (2004). Colour removal from textile effluents. International Journal of Fibre and Textile Research, 29, 239-259.
  • Katheresan, V., Kansedo, J., & Lau, S.Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060
  • Kaya, M., Baublys, V., Sargin, I., Šatkauskienė, I., Paulauskas, A., Akyuz, B., …, & Yurtmen, H. (2016). How taxonomic relations affect the physicochemical properties of chitin. Food Biophysics, 11, 10-19. https://doi.org/10.1007/s11483-015-9404-5
  • Kumar, R.M.N.V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46 1–27. http://doi.org/10.1016/S1381-5148(00)00038-9
  • Liu, L., Gao, Z.Y., Su, X.P., Chen, X., Jiang, L., & Yao, J.M. (2015). Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-based Bioadsorbent. Acs Sustainable Chemistry & Engineering, 3, 432-442. https://doi.org/10.1021/sc500848m
  • Maderova, Z., Baldikova, E., Pospiskova, K., Safarik, I., & Safarikova, M. (2016). Removal of dyes by adsorption on magnetically modified activated sludge. International Journal of Environmental Science and Technology, 13, 1653–1664. https://doi.org/10.1007/s13762-016-1001-8
  • McKay, G., Blair, H.S., & Gardner, J. R. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27, 3043-3057. https://doi.org/10.1002/app.1982.070270827
  • Millicent Mabel, M., Sundararaman, T.R., Parthasarathy, N., & Rajkumar, J. (2019). Chitin beads from peneaus sp. shells as a biosorbent for methylene blue dye removal. Polish Journal of Environmental Studies, 28(4), 2253-2259. https://doi.org/10.15244/pjoes/90359
  • Ratnamala, G.M., Shetty, K.V., & Srinikethan, G. (2012). Removal of remazol brilliant blue dye from dye-contaminated water by adsorption using red mud: Equilibrium, kinetic, and thermodynamic studies. Water, Air, & Soil Pollution, 223, 6187-6199. https://doi.org/10.1007/s11270-012-1349-4
  • Sen, S.K., Raut, S., Bandyopadhyay, P., & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30(3), 112-133. https://doi.org/10.1016/j.fbr.2016.06.003
  • Stingley, R.L., Zou, W., Heinze, T.M., Chen, H., & Cerniglia, C.E. (2010). Metabolism of azo dyes by human skin microbiota. Journal of Medical Microbiology, 59(1), 108-114. https://doi.org/10.1099/jmm.0.012617-0
  • Wong, Y.C., Szeto, Y.S., Cheung, W.H., & McKay, G. (2003). Equilibrium studies for acid dye adsorption onto chitosan. Langmuir, 19, 7888-7894. https://doi.org/10.1021/la030064y
  • Yadav, A.K., Jena, S., Acharya, B.C., & Mishra, B.K. (2012). Removal of azo dye in innovative constructed wetlands: Influence of iron scrap and sulfate reducing bacterial enrichment. Ecological Engineering, 49, 53-58. https://doi.org/10.1016/j.ecoleng.2012.08.032
  • Zhou, L., Jin, J., Liu, Z., Liang, X., & Shang, C. (2011). Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. Journal of Hazardous Materials, 185(2-3), 1045-1052. https://doi.org/10.1016/j.jhazmat.2010.10.012
There are 30 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Yusuf Doruk Aracagök 0000-0002-0354-0817

Gözde Koşarsoy Ağçeli 0000-0001-8318-8990

Mahmut Kabalak 0000-0001-6073-2551

Early Pub Date September 4, 2022
Publication Date December 31, 2022
Submission Date July 27, 2022
Acceptance Date November 30, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Aracagök, Y. D., Koşarsoy Ağçeli, G., & Kabalak, M. (2022). A New Approach for Dye Removal with a Polymer: Removal of Acid Orange 12 from Aqueous Solution with Shrimp Chitin. Commagene Journal of Biology, 6(2), 172-177. https://doi.org/10.31594/commagene.1149575